Statistical inference on random dot product graphs: A survey

被引:0
|
作者
Athreya, Avanti [1 ]
Fishkind, Donniell E [1 ]
Tang, Minh [1 ]
Priebe, Carey E [1 ]
Park, Youngser [2 ]
Vogelstein, Joshua T. [3 ]
Levin, Keith [4 ]
Lyzinski, Vince [5 ]
Qin, Yichen [6 ]
Sussman, Daniel L [7 ]
机构
[1] Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore,MD,2128, United States
[2] Center for Imaging Science, Johns Hopkins University, Baltimore,MD,21218, United States
[3] Department of Biomedical Engineering, Johns Hopkins University, Baltimore,MD,21218, United States
[4] Department of Statistics, University of Michigan, Ann Arbor,MI,48109, United States
[5] Department of Mathematics and Statistics, University of Massachusetts Amherst, MA,01003-9305, United States
[6] Department of Operations, Business Analytics, and Information Systems, College of Business University of Cincinnati, Cincinnati,OH,45221-0211, United States
[7] Department of Mathematics and Statistics, Boston University, Boston,MA,02215, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The random dot product graph (RDPG) is an independent-edge random graph that is analytically tractable and, simultaneously, either encompasses or can successfully approximate © 2018 Avanti Athreya, Donniell E. Fishkind, Keith Levin, Vince Lyzinski, Yichen Qin, Youngser Park, Daniel L. Sussman, Minh Tang, Joshua T. Vogelstein, and Carey E. Priebe .
引用
下载
收藏
页码:1 / 92
相关论文
共 50 条
  • [1] Statistical Inference on Random Dot Product Graphs: a Survey
    Athreya, Avanti
    Fishkind, Donniell E.
    Minh Tang
    Priebe, Carey E.
    Park, Youngser
    Vogelstein, Joshua T.
    Levin, Keith
    Lyzinski, Vince
    Qin, Yichen
    Sussman, Daniel L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [2] MAXIMUM A POSTERIORI INFERENCE OF RANDOM DOT PRODUCT GRAPHS VIA CONIC PROGRAMMING
    Wu, David X.
    Palmer, David
    Deford, Daryl R.
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2527 - 2551
  • [3] Directed Random Dot Product Graphs
    Young, Stephen J.
    Scheinerman, Edward
    INTERNET MATHEMATICS, 2008, 5 (1-2) : 91 - 111
  • [4] Using the bootstrap for statistical inference on random graphs
    Thompson, Mary E.
    Ramirez, Lilia L. Ramirez
    Lyubchich, Vyacheslav
    Gel, Yulia R.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (01): : 3 - 24
  • [5] Optimal Bayesian estimation for random dot product graphs
    Xie, Fangzheng
    Xu, Yanxun
    BIOMETRIKA, 2020, 107 (04) : 875 - 889
  • [6] RANDOM ATTRIBUTED GRAPHS FOR STATISTICAL INFERENCE FROM CONTENT AND CONTEXT
    Gorin, A. L.
    Priebe, C. E.
    Grothendieck, J.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 5430 - 5433
  • [7] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya, A.
    Priebe, C. E.
    Tang, M.
    Lyzinski, V.
    Marchette, D. J.
    Sussman, D. L.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 1 - 18
  • [8] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya A.
    Priebe C.E.
    Tang M.
    Lyzinski V.
    Marchette D.J.
    Sussman D.L.
    Sankhya A, 2016, 78 (1): : 1 - 18
  • [9] Maximum Likelihood Embedding of Logistic Random Dot Product Graphs
    O'Connor, Luke J.
    Medard, Muriel
    Feizi, Soheil
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 5289 - 5297
  • [10] A neurologically plausible implementation of statistical inference applied to random dot motion
    James Martens
    Chris Eliasmith
    BMC Neuroscience, 8 (Suppl 2)