A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs

被引:0
|
作者
Athreya, A. [1 ]
Priebe, C. E. [1 ]
Tang, M. [1 ]
Lyzinski, V. [2 ]
Marchette, D. J. [3 ]
Sussman, D. L. [4 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, 3400 N Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Human Language Technol Ctr Excellence, Stieff Bldg,810 Wyman Pk Dr, Baltimore, MD 21211 USA
[3] Naval Surface Warfare Ctr, 17320 Dahlgren Rd, Dahlgren, VA 22448 USA
[4] Harvard Univ, Dept Stat, Ctr Sci, Floor 7,One Oxford St, Cambridge, MA 02138 USA
关键词
Random dot product graph; Central limit theorem; Model-based clustering;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a central limit theorem for the components of the largest eigenvectors of the adjacency matrix of a finite-dimensional random dot product graph whose true latent positions are unknown. We use the spectral embedding of the adjacency matrix to construct consistent estimates for the latent positions, and we show that the appropriately scaled differences between the estimated and true latent positions converge to a mixture of Gaussian random variables. We state several corollaries, including an alternate proof of a central limit theorem for the first eigenvector of the adjacency matrix of an Erdos-Renyi random graph.
引用
下载
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] A Limit Theorem for Scaled Eigenvectors of Random Dot Product Graphs
    Athreya A.
    Priebe C.E.
    Tang M.
    Lyzinski V.
    Marchette D.J.
    Sussman D.L.
    Sankhya A, 2016, 78 (1): : 1 - 18
  • [2] A central limit theorem for an omnibus embedding of multiple random dot product graphs
    Levin, Keith
    Athreya, Avanti
    Tang, Minh
    Lyzinski, Vince
    Priebe, Carey E.
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 964 - 967
  • [3] LIMIT THEOREMS FOR EIGENVECTORS OF THE NORMALIZED LAPLACIAN FOR RANDOM GRAPHS
    Tang, Minh
    Priebe, Carey E.
    ANNALS OF STATISTICS, 2018, 46 (05): : 2360 - 2415
  • [4] Directed Random Dot Product Graphs
    Young, Stephen J.
    Scheinerman, Edward
    INTERNET MATHEMATICS, 2008, 5 (1-2) : 91 - 111
  • [5] Localization of eigenvectors in random graphs
    Slanina, F.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (11):
  • [6] A Central Limit Theorem for Diffusion in Sparse Random Graphs
    Amini, Hamed
    Bayraktar, Erhan
    Chakraborty, Suman
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (03)
  • [7] A limit theorem for small cliques in inhomogeneous random graphs
    Hladky, Jan
    Pelekis, Christos
    Sileikis, Matas
    JOURNAL OF GRAPH THEORY, 2021, 97 (04) : 578 - 599
  • [8] Limit Theorem for Spectra of Laplace Matrix of Random Graphs
    Tikhomirov, Alexander N. N.
    MATHEMATICS, 2023, 11 (03)
  • [9] A Central Limit Theorem for Diffusion in Sparse Random Graphs
    Hamed Amini
    Erhan Bayraktar
    Suman Chakraborty
    Journal of Statistical Physics, 2023, 190
  • [10] Localization of eigenvectors in random graphs
    F. Slanina
    The European Physical Journal B, 2012, 85