Exponential Radon transform of random functions

被引:0
|
作者
机构
[1] Ushakov, V.G.
[2] Shestakov, O.V.
来源
Ushakov, V.G. | 2005年 / Izdatel'stvo Moskovskogo Universiteta卷
关键词
6;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Minimax Optimal Estimator in a Stochastic Inverse Problem for Exponential Radon Transform
    Abhishek, Anuj
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 980 - 998
  • [32] Minimax Optimal Estimator in a Stochastic Inverse Problem for Exponential Radon Transform
    Anuj Abhishek
    Sankhya A, 2023, 85 : 980 - 998
  • [33] Range spaces and inversion formulas for the exponential radon transform and its dual
    Lazhari, MN
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1999, 6 (03) : 314 - 330
  • [34] Bargmann-Radon transform for axially monogenic functions
    Adan, Ali Guzman
    Hu, Ren
    Raeymaekers, Tim
    Sommen, Franciscus
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) : 1846 - 1861
  • [35] RADON TRANSFORM OF RAPIDLY DECREASING FUNCTIONS ON SYMMETRIC SPACES
    EGUCHI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 : 1030 - 1031
  • [36] Formal loops III: Additive functions and the Radon transform
    Kapranov, M.
    Vasserot, E.
    ADVANCES IN MATHEMATICS, 2008, 219 (06) : 1852 - 1871
  • [37] Radon Transform Inversion Formula in the Class of Discontinuous Functions
    Anikonov, D.S.
    Konovalova, D.S.
    Journal of Applied and Industrial Mathematics, 2024, 18 (03) : 379 - 383
  • [38] A robust method for random noise suppression based on the Radon transform
    Zhang, Quan
    Wang, Hang
    Chen, Wei
    Huang, Guangtan
    JOURNAL OF APPLIED GEOPHYSICS, 2021, 184
  • [39] Exponential radon transform inversion based on harmonic analysis of the Euclidean motion group
    Yarman, CE
    Yazici, B
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 3377 - 3379
  • [40] Adaptive Estimation of a Function from its Exponential Radon Transform in Presence of Noise
    Arya, Sakshi
    Abhishek, Anuj
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (02): : 1127 - 1155