Exponential Radon transform of random functions

被引:0
|
作者
机构
[1] Ushakov, V.G.
[2] Shestakov, O.V.
来源
Ushakov, V.G. | 2005年 / Izdatel'stvo Moskovskogo Universiteta卷
关键词
6;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] INTEGRALS OF EXPONENTIAL FUNCTIONS WITH RESPECT TO RADON MEASURE
    Merzlyakov, S. G.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (02): : 56 - 78
  • [22] PALEY-WIENER THEOREM FOR EXPONENTIAL RADON-TRANSFORM
    KUCHMENT, PA
    LVIN, SY
    ACTA APPLICANDAE MATHEMATICAE, 1990, 18 (03) : 251 - 260
  • [23] THE EXPONENTIAL RADON-TRANSFORM AND PROJECTION FILTERING IN RADIOTHERAPY PLANNING
    BORTFELD, TR
    BOYER, AL
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1995, 6 (01) : 62 - 70
  • [24] Radon transform and pattern functions in quantum tomography
    Wunsche, A
    JOURNAL OF MODERN OPTICS, 1997, 44 (11-12) : 2293 - 2331
  • [25] Szegö–Radon Transform for Biaxially Monogenic Functions
    Ren Hu
    Tim Raeymaekers
    Franciscus Sommen
    Advances in Applied Clifford Algebras, 2019, 29
  • [26] Szego-Radon transform for hypermonogenic functions
    Adan, Ali Guzman
    Hu, Ren
    Raeymaekers, Tim
    Sommen, Franciscus
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [27] An anylytical inversion of the 180° Exponential Radon Transform with a numerical kernel
    Huang, Qiu
    Zeng, Gengsheng L.
    Gullberg, Grant T.
    2006 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOL 1-6, 2006, : 2818 - 2821
  • [28] Projections onto the range of the exponential Radon transform and reconstruction algorithms
    Clarkson, E
    INVERSE PROBLEMS, 1999, 15 (02) : 563 - 571
  • [29] A local radon transform for seismic random noise attenuation
    Zhang, Quan
    Wang, Hang
    Chen, Wei
    Huang, Guangtan
    JOURNAL OF APPLIED GEOPHYSICS, 2021, 186 (186)
  • [30] Szego-Radon Transform for Biaxially Monogenic Functions
    Hu, Ren
    Raeymaekers, Tim
    Sommen, Franciscus
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)