Formal loops III: Additive functions and the Radon transform

被引:3
|
作者
Kapranov, M. [1 ]
Vasserot, E. [2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
基金
美国国家科学基金会;
关键词
Vertex algebras; Radon transform; Symplectic action; Gerbe;
D O I
10.1016/j.aim.2008.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To any algebraic variety X and closed 2-form omega on X, we associate the "symplectic action functional" T(omega) which is a function on the formal loop space LX introduced by the authors earlier. The correspondence omega -> T(omega) can be seen as a version of the Radon transform. We give a characterization of the functions of the form T(omega) in terms of factorizability (infinitesimal analog of additivity in holomorphic pairs of pants) as well As in terms of vertex operator algebras. These results will be used in the subsequent paper which will relate the gerbe of chiral differential operators on X (whose lien is the sheaf of closed 2-forms) and the determinantal gerbe of the tangent bundle of LX (whose lien is the sheaf of invertible functions on LX). On the level of liens this relation associates to a closed 2-form to the invertible function exp T(omega). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1852 / 1871
页数:20
相关论文
共 50 条
  • [1] Formal Series on Cylinders and Their Radon Transform
    Ricardo Estrada
    Vietnam Journal of Mathematics, 2019, 47 (2) : 417 - 430
  • [2] The radon transform for functions defined on planes
    Ehrenpreis, Leon
    Integral Geometry and Tomography, 2006, 405 : 41 - 46
  • [3] Exponential Radon transform of random functions
    Ushakov, V.G., 2005, Izdatel'stvo Moskovskogo Universiteta
  • [4] Radon–Kipriyanov Transform of Finite Functions
    V. A. Kalitvin
    M. G. Lapshina
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5537 - 5545
  • [5] Radon transform and pattern functions in quantum tomography
    Wunsche, A
    JOURNAL OF MODERN OPTICS, 1997, 44 (11-12) : 2293 - 2331
  • [6] Szegö–Radon Transform for Biaxially Monogenic Functions
    Ren Hu
    Tim Raeymaekers
    Franciscus Sommen
    Advances in Applied Clifford Algebras, 2019, 29
  • [7] Szego-Radon transform for hypermonogenic functions
    Adan, Ali Guzman
    Hu, Ren
    Raeymaekers, Tim
    Sommen, Franciscus
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 170
  • [8] Szego-Radon Transform for Biaxially Monogenic Functions
    Hu, Ren
    Raeymaekers, Tim
    Sommen, Franciscus
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
  • [9] Bargmann-Radon transform for axially monogenic functions
    Adan, Ali Guzman
    Hu, Ren
    Raeymaekers, Tim
    Sommen, Franciscus
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (11) : 1846 - 1861
  • [10] RADON TRANSFORM OF RAPIDLY DECREASING FUNCTIONS ON SYMMETRIC SPACES
    EGUCHI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 : 1030 - 1031