Control of chlorination disinfection by-products in drinking water by combined nanofiltration process: A case study with trihalomethanes and haloacetic acids

被引:2
|
作者
Zheng W. [1 ,2 ]
Chen Y. [1 ,2 ]
Zhang J. [1 ,2 ]
Peng X. [1 ,2 ]
Xu P. [1 ,2 ]
Niu Y. [1 ,2 ]
Dong B. [3 ,4 ]
机构
[1] Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou
[2] College of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou
[3] College of Environmental Science and Engineering, Tongji University, Shanghai
[4] Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Combined nanofiltration process; Disinfection by-products; Drinking water treatment; Natural organic matter;
D O I
10.1016/j.chemosphere.2024.142121
中图分类号
学科分类号
摘要
Disinfection by-products (DBPs) are prevalent contaminants in drinking water and are primarily linked to issues regarding water quality. These contaminants have been associated with various adverse health effects. Among different treatment processes, nanofiltration (NF) has demonstrated superior performance in effectively reducing the levels of DBPs compared to conventional processes and ozone-biological activated carbon (O3-BAC) processes. In this experiment, we systematically investigated the performance of three advanced membrane filtration treatment schemes, namely “sand filter + nanofiltration” (SF + NF), “sand filter + ozone-biological activated carbon + nanofiltration” (SF + O3-BAC + NF), and “ultrafiltration + nanofiltration” (UF + NF), in terms of their ability to control disinfection by-product (DBP) formation in treated water, analyzed the source and fate of DBP precursors during chlorination, and elucidated the role of precursor molecular weight distribution during membrane filtration in relation to DBP formation potential (DBPFP). The results indicated that each treatment process reduced DBPFP, as measured by trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP), with the SF + O3-BAC + NF process being the most effective (14.27 μg/L and 14.88 μg/L), followed by the SF + NF process (21.04 μg/L and 16.29 μg/L) and the UF + NF process (26.26 μg/L and 21.75 μg/L). Tyrosine, tryptophan, and soluble microbial products were identified as the major DBP precursors during chlorination, with their fluorescence intensity decreasing gradually as water treatment progressed. Additionally, while large molecular weight organics (60–100,000 KDa) played a minor role in DBPFP, small molecular weight organics (0.2–5 KDa) were highlighted as key contributors to DBPFP, and medium molecular weight organics (5–60 KDa) could adhere to the membrane surface and reduce DBPFP. Based on these findings, the combined NF process can be reasonably selected for controlling DBP formation, with potential long-term benefits for human health. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Influence of Preozonation on the Formation of Chlorination Disinfection By-products - A Case Study: The Uzquiza Reservoir Water
    Rodriguez, Francisco J.
    Marcos, Luis A.
    Nunez, Luis A.
    OZONE-SCIENCE & ENGINEERING, 2012, 34 (03) : 213 - 224
  • [22] Occurrence and control of nitrogenous disinfection by-products in drinking water - A review
    Bond, Tom
    Huang, Jin
    Templeton, Michael R.
    Graham, Nigel
    WATER RESEARCH, 2011, 45 (15) : 4341 - 4354
  • [23] Stability of Drinking Water Distribution Systems and Control of Disinfection By-Products
    Zhou, Qingwei
    Bian, Zhengfu
    Yang, Dejun
    Fu, Li
    TOXICS, 2023, 11 (07)
  • [24] The Influence of Cu(II) on the Formation and Distribution of Disinfection By-Products during the Chlorination of Drinking Water
    Liu, Shao-gang
    Zhu, Zhi-liang
    Tan, Xue-cai
    Feng, Xin-hui
    Huang, Zai-yin
    Qiu, Yan-ling
    Zhao, Jian-fu
    WATER AIR AND SOIL POLLUTION, 2013, 224 (04):
  • [25] The Influence of Cu(II) on the Formation and Distribution of Disinfection By-Products during the Chlorination of Drinking Water
    Shao-gang Liu
    Zhi-liang Zhu
    Xue-cai Tan
    Xin-hui Feng
    Zai-yin Huang
    Yan-ling Qiu
    Jian-fu Zhao
    Water, Air, & Soil Pollution, 2013, 224
  • [26] Formation of major disinfection by-products from representative microorganisms during drinking water chlorination
    Li, Lin-Lin
    Liu, Jia-Meng
    Song, Bi-Yao
    Sun, Xing-Bin
    Zhongguo Huanjing Kexue/China Environmental Science, 2016, 36 (12): : 3631 - 3638
  • [27] Chlorination Disinfection By-Products in Drinking Water and Congenital Anomalies: Review and Meta-Analyses
    Nieuwenhuijsen, Mark J.
    Martinez, David
    Grellier, James
    Bennett, James
    Best, Nicky
    Iszatt, Nina
    Vrijheid, Martine
    Toledano, Mireille B.
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2009, 117 (10) : 1486 - 1493
  • [28] An inclusive study of the presence of the disinfection by-products in Greek drinking water
    Kampioti, Adamantia
    Stephanou, Euripides
    Proceedings of the 9th International Conference on Environmental Science and Technology, Vol A - Oral Presentations, Pts A and B, 2005, : A647 - A652
  • [29] Ozonation-BAC process for the control of disinfection by-products and bio-stability in drinking water
    Shu, Shihu
    Zhang, Jing
    JOURNAL OF BIOTECHNOLOGY, 2008, 136 : S668 - S669
  • [30] Estimation and control of health risk due to drinking water quality: Disinfection and disinfection by-products
    Asami, M
    PSAM 5: PROBABILISTIC SAFETY ASSESSMENT AND MANAGEMENT, VOLS 1-4, 2000, (34): : 581 - 588