RATIO CONVERGENCE RATES FOR EUCLIDEAN FIRST-PASSAGE PERCOLATION: APPLICATIONS TO THE GRAPH INFINITY LAPLACIAN

被引:0
|
作者
Bungert, Leon [1 ]
Calder, Jeff [2 ]
Roith, And T.I.M. [3 ]
机构
[1] Institute of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, Würzburg, Germany
[2] School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis,MN,55455, United States
[3] Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg,22607, Germany
来源
arXiv | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Concentration of measure - First passage percolation - Graph infinity laplacian - Graph-based - Graph-based semi-supervised learning - Infinity laplacian - Lipschitz - Lipschitz learning - Poisson point process - Semi-supervised learning
引用
收藏
相关论文
共 50 条
  • [1] RATIO CONVERGENCE RATES FOR EUCLIDEAN FIRST-PASSAGE PERCOLATION: APPLICATIONS TO THE GRAPH INFINITY LAPLACIAN
    Bungert, Leon
    Calder, Jeff
    Roith, Tim
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (04): : 3870 - 3910
  • [2] Euclidean models of first-passage percolation
    C. Douglas Howard
    Charles M. Newman
    Probability Theory and Related Fields, 1997, 108 : 153 - 170
  • [3] Euclidean models of first-passage percolation
    Howard, CD
    Newman, CM
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 153 - 170
  • [4] Entropy reduction in Euclidean first-passage percolation
    Damron, Michael
    Wang, Xuan
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [5] Sublinear variance in Euclidean first-passage percolation
    Bernstein, Megan
    Damron, Michael
    Greenwood, Torin
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5060 - 5099
  • [6] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237
  • [7] Nonhomogeneous Euclidean first-passage percolation and distance learning
    Groisman, Pablo
    Jonckheere, Matthieu
    Sapienza, Facundo
    BERNOULLI, 2022, 28 (01) : 255 - 276
  • [8] Geodesics and spanning trees for euclidean first-passage percolation
    Howard, CD
    Newman, CM
    ANNALS OF PROBABILITY, 2001, 29 (02): : 577 - 623
  • [9] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [10] First-passage percolation
    Kesten, H
    FROM CLASSICAL TO MODERN PROBABILITY, 2003, 54 : 93 - 143