A review on short-term and ultra-short-term wind power prediction

被引:62
|
作者
Xue, Yusheng [1 ,2 ]
Yu, Chen [1 ,2 ]
Zhao, Junhua [3 ]
Li, Kang [4 ]
Liu, Xueqin [4 ]
Wu, Qiuwei [5 ]
Yang, Guangya [5 ]
机构
[1] NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing,211106, China
[2] School of Automation, Nanjing University of Science and Technology, Nanjing,210094, China
[3] College of Electrical Engineering, Zhejiang University, Hangzhou,310027, China
[4] Queen's University Belfast, Northern Ireland,BT9 5AH, United Kingdom
[5] Technical University of Denmark, Lyngby,2800, Denmark
关键词
D O I
10.7500/AEPS20141218003
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:141 / 151
相关论文
共 50 条
  • [11] ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON VARIABLE FEATURE WEIGHT
    Wang X.
    Li S.
    Liu Y.
    Jing T.
    Gao X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (02): : 52 - 58
  • [12] Ultra-short-term wind power prediction based on double decomposition and LSSVM
    Qin, Bin
    Huang, Xun
    Wang, Xin
    Guo, Lingzhong
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (14) : 2627 - 2636
  • [13] Ultra-Short-Term Wind Power Prediction Using BP Neural Network
    Li, Jinxuan
    Mao, Jiandong
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 2001 - 2006
  • [14] Adaptive Ultra-short-term Wind Power Prediction Based on Risk Assessment
    Xue, Yusheng
    Yu, Chen
    Li, Kang
    Wen, Fushuan
    Ding, Yi
    Wu, Qiuwei
    Yang, Guangya
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2016, 2 (03): : 59 - 64
  • [15] COMBINED ULTRA-SHORT-TERM POWER PREDICTION FOR WIND POWER HYDROGEN PRODUCTION TECHNOLOGY
    Zhao Y.
    Zhao H.
    Tan J.
    Zhang R.
    Jing Y.
    Sun H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (03): : 162 - 168
  • [16] Ultra-Short-Term Wind Power Prediction Based on eEEMD-LSTM
    Huang, Jingtao
    Zhang, Weina
    Qin, Jin
    Song, Shuzhong
    ENERGIES, 2024, 17 (01)
  • [17] Research on short-term and ultra-short-term cooling load prediction models for office buildings
    Ding, Yan
    Zhang, Qiang
    Yuan, Tianhao
    ENERGY AND BUILDINGS, 2017, 154 : 254 - 267
  • [18] Prediction of ultra-short-term wind power based on CEEMDAN-LSTM-TCN
    Hu, Chenjia
    Zhao, Yan
    Jiang, He
    Jiang, Mingkun
    You, Fucai
    Liu, Qian
    ENERGY REPORTS, 2022, 8 : 483 - 492
  • [19] A novel ultra-short-term wind power prediction method based on XA mechanism
    Peng, Cheng
    Zhang, Yiqin
    Zhang, Bowen
    Song, Dan
    Lyu, Yi
    Tsoi, Ahchung
    APPLIED ENERGY, 2023, 351
  • [20] A Spatiotemporal Directed Graph Convolution Network for Ultra-Short-Term Wind Power Prediction
    Li, Zhuo
    Ye, Lin
    Zhao, Yongning
    Pei, Ming
    Lu, Peng
    Li, Yilin
    Dai, Binhua
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2023, 14 (01) : 39 - 54