A review on short-term and ultra-short-term wind power prediction

被引:62
|
作者
Xue, Yusheng [1 ,2 ]
Yu, Chen [1 ,2 ]
Zhao, Junhua [3 ]
Li, Kang [4 ]
Liu, Xueqin [4 ]
Wu, Qiuwei [5 ]
Yang, Guangya [5 ]
机构
[1] NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing,211106, China
[2] School of Automation, Nanjing University of Science and Technology, Nanjing,210094, China
[3] College of Electrical Engineering, Zhejiang University, Hangzhou,310027, China
[4] Queen's University Belfast, Northern Ireland,BT9 5AH, United Kingdom
[5] Technical University of Denmark, Lyngby,2800, Denmark
关键词
D O I
10.7500/AEPS20141218003
中图分类号
学科分类号
摘要
引用
下载
收藏
页码:141 / 151
相关论文
共 50 条
  • [41] An Ultra-Short-Term and Short-Term Wind Power Forecasting Approach Based on Optimized Artificial Neural Network with Time Series Reconstruction
    Zha, Lihan
    Jiang, DongXiang
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 2068 - 2073
  • [42] Research on a Deep Ensemble Learning Model for the Ultra-Short-Term Probabilistic Prediction of Wind Power
    Zhou, Yan
    Wei, Fuzhen
    Kuang, Kaiyang
    Mahfoud, Rabea Jamil
    ELECTRONICS, 2024, 13 (03)
  • [43] Ultra-short-term wind power prediction based on variational mode decomposition and clustering method
    Liu Chenyu
    Zhang Xuemin
    Mei Shengwei
    Huang Shaowei
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6452 - 6457
  • [44] Ultra-short-term wind power prediction based on chaos phase space reconstruction and NWP
    Gao, Yang
    Xu, Aoran
    Zhao, Yan
    Liu, Baogui
    Zhang, Liu
    Dong, Lei
    International Journal of Control and Automation, 2015, 8 (05): : 325 - 336
  • [45] Probability Prediction of Ultra-short-term Wind Power Considering Unbalanced Distribution of Training Samples
    Li D.
    Fang Z.
    Miao S.
    Hu Y.
    Liang Y.
    He S.
    Dianwang Jishu/Power System Technology, 2024, 48 (03): : 1133 - 1145
  • [46] Ultra-short-term Wind Power Combined Prediction Based on CEEMD-SBO-LSSVR
    Zhou X.
    Tong X.
    Dianwang Jishu/Power System Technology, 2021, 45 (03): : 855 - 862
  • [47] A novel approach to ultra-short-term wind power prediction based on feature engineering and informer
    Wei, Hui
    Wang, Wen-sheng
    Kao, Xiao-xuan
    ENERGY REPORTS, 2023, 9 : 1236 - 1250
  • [48] Ultra-short-term wind power prediction based on OS-ELM and bootstrap method
    Wang, Yan
    Wang, Zhen
    Huang, Minxiang
    Cai, Zhenqi
    Yang, Mengmeng
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2014, 38 (06): : 14 - 19
  • [49] A Prediction Model for Ultra-Short-Term Output Power of Wind Farms Based on Deep Learning
    Wang, Y. S.
    Gao, J.
    Xu, Z. W.
    Luo, J. D.
    Li, L. X.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (04)
  • [50] Ultra-short-term Prediction of Photovoltaic Power Based on Dataset Distillation
    Zheng K.
    Wang L.
    Hao Y.
    Wang B.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (13): : 5196 - 5207