Synergistic lithiophilic inner layer and nitrogen-riched outer layer in the gradient solid electrolyte interphase to achieve stable lithium metal batteries

被引:2
|
作者
Shi, Yaru [1 ]
Hu, Xiaofeng [1 ]
Zhang, Zheng [1 ]
Sun, Yiwen [1 ]
Xu, Shabei [1 ]
Zhao, Bing [1 ,2 ]
Xu, Yi [1 ]
He, Yaolong [3 ,4 ]
Zhang, Jiujun [2 ]
Jiang, Yong [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai 200072, Peoples R China
[4] Shanghai Univ, Shanghai Frontier Sci Ctr Mechanoinformat, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient solid electrolyte interphase; Cationic shielding effect; DFT calculation; Finite element simulation; 3D lithium anode skeleton; DEPOSITION;
D O I
10.1016/j.cej.2024.157202
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium metal, heralded as the next-generation anode material for energy storage batteries, faces significant challenges in the application of liquid batteries, including the instability of the solid electrolyte interphase (SEI) layer and the uncontrollable growth of lithium dendrites. In this work, we introduce a dual-strategy involving a lithiophilic Ag nanoparticle layer and a multifunctional electrolyte additive to engineer a durable threedimensional (3D) porous copper foam anode skeleton (denoted as Ag@CF-me) with gradient SEI. Density functional theory (DFT) calculations reveal that the strong binding energy of Ag facilitates the uniform nucleation and deposition of lithium. The narrow HOMO-LUMO gap in KNO3 promotes its preferential reduction on lithium anodes, enhancing the formation of a stable, highly conductive nitrogen-riched SEI layer which is conductive to rapid Li+ transport. COMSOL simulations confirm that K+ shielding prevents dendrite growth and encourages uniform lithium deposition. Consequently, the sequential structure of lithiophilic, mechanically robust, and fast ion conduction layers can effectually reduce nucleation overpotential, form electrostatic shielding, and regulate uniform lithium deposition. The half-cells with Ag@CF-me achieve a prolong cycle life of 1000 h at 1 mA cm(- 2), remarkably low overpotential (similar to 6 mV) and high coulombic efficiency (CE, ca. 99.7 % after 600 cycles at 0.5 mA cm(- 2), 1mAh cm(- 2)). The full battery assembled with LiFePO4 (LFP) cathode maintains a capacity retention rate of 90.3 % after 600 cycles at 1C rate. The regulation strategy for constructing gradient SEI layer proposed in this study provides an idea for depositing lithium in a safe location and a facile method for constructing stable lithium metal anode on the 3D skeleton.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Reforming the Uniformity of Solid Electrolyte Interphase by Nanoscale Structure Regulation for Stable Lithium Metal Batteries
    Zhang, Qian-Kui
    Sun, Shu-Yu
    Zhou, Ming-Yue
    Hou, Li-Peng
    Liang, Jia-Lin
    Yang, Shi-Jie
    Li, Bo-Quan
    Zhang, Xue-Qiang
    Huang, Jia-Qi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (42)
  • [42] Interfacial modification by lithiophilic oxide facilitating uniform and thin solid electrolyte interphase towards stable lithium metal anodes
    Lu, L. Q.
    Pei, Y. T.
    MATERIALS TODAY ENERGY, 2021, 21
  • [43] An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries
    Merso, Semaw Kebede
    Tekaligne, Teshager Mekonnen
    Weldeyohannes, Haile Hisho
    Nikodimos, Yosef
    Shitaw, Kassie Nigus
    Jiang, Shi-Kai
    Huang, Chen-Jui
    Wondimkun, Zewdu Tadesse
    Jote, Bikila Alemu
    Wichmann, Lennart
    Brunklaus, Gunther
    Winter, Martin
    Wu, She-Huang
    Su, Wei-Nien
    Mou, Chung-Yuan
    Hwang, Bing Joe
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [44] Synergistic Modulation of Solid- and Cathode-Electrolyte Interphase via a Lithium Salt Additive toward Stable Sodium Metal Batteries
    Wei, Xianbin
    Zhen, Cheng
    Li, Menghao
    Zhang, Zhen
    Yang, Xuming
    Gu, M. Danny
    NANO LETTERS, 2025, 25 (04) : 1336 - 1343
  • [45] Designing a Stable Solid Electrolyte Interphase on Lithium Metal Anodes by Tailoring a Mg Atom Center and the Inner Helmholtz Plane for Lithium-Sulfur Batteries
    Tan, Jian
    Li, Xuanyang
    Fang, Zhan
    Shen, Jianfeng
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (14) : 17893 - 17903
  • [46] Fluorinated Artificial Solid−Electrolyte−Interphase Layer for Long-Life Sodium Metal Batteries
    Damircheli R.
    Hoang B.
    Ferrari V.C.
    Lin C.-F.
    ACS Applied Materials and Interfaces, 2023, 15 (47): : 54915 - 54922
  • [47] Bifunctional Alloy/Solid-Electrolyte Interphase Layer for Enhanced Potassium Metal Batteries Via
    Xie, Junpeng
    Ji, Yu
    Ma, Liang
    Wen, Zhaorui
    Pu, Jun
    Wang, Litong
    Ding, Sen
    Shen, Zhaoxi
    Liu, Yu
    Li, Jinliang
    Mai, Wenjie
    Hong, Guo
    ACS NANO, 2023, 17 (02) : 1511 - 1521
  • [48] Enhanced performance in lithium metal batteries: A dual-layer solid electrolyte interphase strategy via perfluoropolyether derivative additive
    Zhan, Yu
    Zhai, Pengfei
    Song, Tinglu
    Yang, Wen
    Li, Yuchuan
    CHEMICAL ENGINEERING JOURNAL, 2024, 491
  • [49] Constructing methyl methacrylate/MXene artificial solid-electrolyte interphase layer for lithium metal batteries with high electrochemical performance
    Huang, Zhencheng
    Huang, Tao
    Ye, Xue
    Feng, Xingyu
    Yang, Xiuyuan
    Liang, Jianneng
    Ye, Shenghua
    Li, Yongliang
    Ren, Xiangzhong
    Xiong, Wei
    Ouyang, Xiaoping
    Zhang, Qianling
    Liu, Jianhong
    APPLIED SURFACE SCIENCE, 2022, 605
  • [50] Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer
    Zhao, Yuming
    Wang, Daiwei
    Gao, Yue
    Chen, Tianhang
    Huang, Qingquan
    Wang, Donghai
    NANO ENERGY, 2019, 64