Synergistic lithiophilic inner layer and nitrogen-riched outer layer in the gradient solid electrolyte interphase to achieve stable lithium metal batteries

被引:2
|
作者
Shi, Yaru [1 ]
Hu, Xiaofeng [1 ]
Zhang, Zheng [1 ]
Sun, Yiwen [1 ]
Xu, Shabei [1 ]
Zhao, Bing [1 ,2 ]
Xu, Yi [1 ]
He, Yaolong [3 ,4 ]
Zhang, Jiujun [2 ]
Jiang, Yong [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Shanghai Inst Appl Math & Mech, Sch Mech & Engn Sci, Shanghai 200072, Peoples R China
[4] Shanghai Univ, Shanghai Frontier Sci Ctr Mechanoinformat, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
Gradient solid electrolyte interphase; Cationic shielding effect; DFT calculation; Finite element simulation; 3D lithium anode skeleton; DEPOSITION;
D O I
10.1016/j.cej.2024.157202
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lithium metal, heralded as the next-generation anode material for energy storage batteries, faces significant challenges in the application of liquid batteries, including the instability of the solid electrolyte interphase (SEI) layer and the uncontrollable growth of lithium dendrites. In this work, we introduce a dual-strategy involving a lithiophilic Ag nanoparticle layer and a multifunctional electrolyte additive to engineer a durable threedimensional (3D) porous copper foam anode skeleton (denoted as Ag@CF-me) with gradient SEI. Density functional theory (DFT) calculations reveal that the strong binding energy of Ag facilitates the uniform nucleation and deposition of lithium. The narrow HOMO-LUMO gap in KNO3 promotes its preferential reduction on lithium anodes, enhancing the formation of a stable, highly conductive nitrogen-riched SEI layer which is conductive to rapid Li+ transport. COMSOL simulations confirm that K+ shielding prevents dendrite growth and encourages uniform lithium deposition. Consequently, the sequential structure of lithiophilic, mechanically robust, and fast ion conduction layers can effectually reduce nucleation overpotential, form electrostatic shielding, and regulate uniform lithium deposition. The half-cells with Ag@CF-me achieve a prolong cycle life of 1000 h at 1 mA cm(- 2), remarkably low overpotential (similar to 6 mV) and high coulombic efficiency (CE, ca. 99.7 % after 600 cycles at 0.5 mA cm(- 2), 1mAh cm(- 2)). The full battery assembled with LiFePO4 (LFP) cathode maintains a capacity retention rate of 90.3 % after 600 cycles at 1C rate. The regulation strategy for constructing gradient SEI layer proposed in this study provides an idea for depositing lithium in a safe location and a facile method for constructing stable lithium metal anode on the 3D skeleton.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium-Oxygen Batteries
    Lim, Hyung-Seok
    Kwak, Won-Jin
    Chae, Sujong
    Wi, Sungun
    Li, Linze
    Hu, Jiangtao
    Tao, Jinhui
    Wang, Chongmin
    Xu, Wu
    Zhang, Ji-Guang
    ACS ENERGY LETTERS, 2021, 6 (09): : 3321 - 3331
  • [32] Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
    Yue Gao
    Zhifei Yan
    Jennifer L. Gray
    Xin He
    Daiwei Wang
    Tianhang Chen
    Qingquan Huang
    Yuguang C. Li
    Haiying Wang
    Seong H. Kim
    Thomas E. Mallouk
    Donghai Wang
    Nature Materials, 2019, 18 : 384 - 389
  • [33] Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries
    Guoxing Li
    Yue Gao
    Xin He
    Qingquan Huang
    Shuru Chen
    Seong H. Kim
    Donghai Wang
    Nature Communications, 8
  • [34] Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries
    Li, Guoxing
    Gao, Yue
    He, Xin
    Huang, Qingquan
    Chen, Shuru
    Kim, Seong H.
    Wang, Donghai
    NATURE COMMUNICATIONS, 2017, 8
  • [35] In Situ Formation of Stable Dual-Layer Solid Electrolyte Interphase for Enhanced Stability and Cycle Life in All-Solid-State Lithium Metal Batteries
    Yang, Lin
    Mu, Yongbiao
    Zou, Lingfeng
    Li, Chao
    Feng, Yitian
    Chu, Youqi
    Zuo, Daxian
    Das, Soham
    Wei, Lei
    Zhang, Qing
    Wan, Jiayu
    Zeng, Lin
    NANO LETTERS, 2024, 24 (42) : 13162 - 13171
  • [36] Lithiophilic composite solid electrolyte interphase layer modified Li foils: Li metal battery failure analysis
    Chen, Siru
    Xu, Pingbo
    Mei, Qingyang
    Xie, Haiming
    Liu, Yulong
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [37] Silicon Layer on Polymer Electrolyte as a Dendrite Stopper for Stable Lithium Metal Batteries
    Zhao, Li
    Du, Lulu
    Xu, Hantao
    Deng, Jiahui
    Xu, Lin
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9523 - 9531
  • [38] Li-B alloy with artificial solid electrolyte interphase layer for long-life lithium metal batteries
    Zhang, Xianggong
    Sui, Xin
    Zhou, Sisi
    Tang, Cong
    Wang, Rui
    SOLID STATE IONICS, 2020, 354
  • [39] A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
    Li, Nian-Wu
    Shi, Yang
    Yin, Ya-Xia
    Zeng, Xian-Xiang
    Li, Jin-Yi
    Li, Cong-Ju
    Wan, Li-Jun
    Wen, Rui
    Guo, Yu-Guo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (06) : 1505 - 1509
  • [40] Anion modification for stable solid electrolyte interphase in anode-free lithium metal batteries
    Qin, Kaiqiang
    Nguyen, Jacqueline V.
    Yang, Zhenzhen
    Luo, Chao
    MATERIALS TODAY ENERGY, 2023, 31