An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries

被引:11
|
作者
Merso, Semaw Kebede [1 ]
Tekaligne, Teshager Mekonnen [1 ]
Weldeyohannes, Haile Hisho [1 ]
Nikodimos, Yosef [1 ]
Shitaw, Kassie Nigus [1 ]
Jiang, Shi-Kai [1 ]
Huang, Chen-Jui [1 ]
Wondimkun, Zewdu Tadesse [1 ]
Jote, Bikila Alemu [1 ]
Wichmann, Lennart [2 ]
Brunklaus, Gunther [2 ]
Winter, Martin [2 ,3 ]
Wu, She-Huang [4 ,5 ]
Su, Wei-Nien [4 ,5 ]
Mou, Chung-Yuan [6 ]
Hwang, Bing Joe [1 ,5 ,7 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Nanoelectrochem Lab, Taipei 106, Taiwan
[2] Forschungszentrum Juelich GmbH, Helmholtz Inst Muenster IEK 12, D-52425 Julich, Germany
[3] Univ Munster, MEET Battery Res Ctr, D-48149 Munster, Germany
[4] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Nanoelectrochem Lab, Taipei 106, Taiwan
[5] Natl Taiwan Univ Sci & Technol, Sustainable Energy Dev Ctr, Taipei 106, Taiwan
[6] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan
[7] Natl Synchrotron Radiat Res Ctr NSRRC, Hsinchu 30076, Taiwan
关键词
Anode-free; Bifunctional material; Li nucleation; SrF2; particles; Li-Sr alloy; CYCLE LIFE; DEPOSITION; LIQUID; ADDITIVES; SUBSTRATE; BEHAVIOR; IMPACT; FILM;
D O I
10.1016/j.est.2022.105955
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Anode-free lithium metal batteries (AFLMBs) can achieve a high energy density. However, achieving high -capacity retention and Coulombic efficiency (CE) are challenging without a continuous Li supply from the Cu anode side. The lower CE and rapid capacity decay in AFLMBs are primarily due to non-uniform Li deposition and electrolyte decomposition during cycling. Herein, strontium fluoride (SrF2) nanoparticles are applied on Cu foils to attain the in-situ forming of a bifunctional interfacial layer, a Li-Sr alloy, and a LiF-rich SEI composite layer during Li plating. The derived Cu@SrF2 electrode has excellent plating/stripping stability and outstanding performance. AFLMB full cell (Cu@SrF2//NCM111) attains an average Coulombic efficiency (ACE) of 98.6 % and capacity retention of 51.0 % at the 60th cycle using a commercial carbonate-based electrolyte. In contrast, the bare AFLMB full cell (BCu//NCM111) only has an ACE of 94.9 % with a capacity retention of 10.2 % under the same conditions. The concept is proven in lithium metal batteries (LMBs). This strategy provides a simultaneous Li nucleation and formation of LiF-rich SEI layers, rendering it promising to realize AFLMBs and LMBs with long lifespans and high CE.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Regulating lithium-ion flux in the solid electrolyte interphase layer to prevent lithium dendrite growth on lithium metal anode
    Ghanbarzadeh, Behnam
    Khatibi, Ali
    Asadi, Amir
    Shokri, Babak
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 47
  • [2] In-situ organic SEI layer for dendrite-free lithium metal anode
    Kang, Danmiao
    Sardar, Saydual
    Zhang, Rui
    Noam, Hart
    Chen, Jingyun
    Ma, Linge
    Liang, Wenbin
    Shi, Chunsheng
    Lemmon, John P.
    [J]. ENERGY STORAGE MATERIALS, 2020, 27 : 69 - 77
  • [3] The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries
    Wu, Bingbin
    Wang, Shanyu
    Lochala, Joshua
    Desrochers, David
    Liu, Bo
    Zhang, Wenqing
    Yang, Jihui
    Xiao, Jie
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) : 1803 - 1810
  • [4] Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode
    Yan, Chong
    Cheng, Xin-Bing
    Zhao, Chen-Zi
    Huang, Jia-Qi
    Yang, Shu-Ting
    Zhang, Qiang
    [J]. JOURNAL OF POWER SOURCES, 2016, 327 : 212 - 220
  • [5] Stable Solid Electrolyte Interphase Layer Formed by Electrochemical Pretreatment of Gel Polymer Coating on Li Metal Anode for Lithium-Oxygen Batteries
    Lim, Hyung-Seok
    Kwak, Won-Jin
    Chae, Sujong
    Wi, Sungun
    Li, Linze
    Hu, Jiangtao
    Tao, Jinhui
    Wang, Chongmin
    Xu, Wu
    Zhang, Ji-Guang
    [J]. ACS ENERGY LETTERS, 2021, 6 (09): : 3321 - 3331
  • [6] Stabilizing sodium metal anode by in-situ formed Ag metal layer
    Liu, Yan
    Li, Qingzhao
    Lei, Yuying
    Zhou, Dingli
    Wu, Wenwei
    Wu, Xuehang
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 926
  • [7] In Situ Formed Gradient Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
    Zhang, Cai Hong
    Jin, Tong
    Liu, Jiandong
    Ma, Jianmin
    Li, Nian Wu
    Yu, Le
    [J]. SMALL, 2023, 19 (38)
  • [8] Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth
    Liu, Z.
    Qi, Y.
    Lin, Y. X.
    Chen, L.
    Lu, P.
    Chen, L. Q.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (03) : A592 - A598
  • [9] Stabilizing Li7P3S11/lithium metal anode interface by in-situ bifunctional composite layer
    Zhao, Bing
    Shi, Yaru
    Wu, Juan
    Xing, Cong
    Liu, Yiqian
    Ma, Wencheng
    Liu, Xiaoyu
    Jiang, Yong
    Zhang, Jiujun
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 429
  • [10] Multifunctional artificial solid electrolyte interphase layer for lithium metal anode in carbonate electrolyte
    Ran, Qin
    Han, Chongyu
    Tang, Anping
    Chen, Hezhang
    Tang, Zilong
    Jiang, Kecheng
    Mai, Yongjin
    Wang, Jinglun
    [J]. SOLID STATE IONICS, 2020, 344