Regularization properties of Tikhonov regularizaron with sparsity constraints

被引:0
|
作者
Ramlau, Ronny [1 ]
机构
[1] Johann Rado Institute, Altenbergerstr. 69, 4040 Linz, Austria
关键词
Nonlinear equations - Mathematical operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the regularization properties of Tikhonov regularization with a sparsity (or Besov) penalty for the inversion of nonlinear operator equations. We propose an a posteriori parameter choice rule that ensures convergence in the used norm as the data error goes to zero. We show that the method of surrogate functionals will at least reconstruct a critical point of the Tikhonov functional. Finally, we present some numerical results for a nonlinear Hammerstein equation. Copyright © 2008, Kent State University.
引用
收藏
页码:54 / 74
相关论文
共 50 条
  • [41] GRADIENT DESCENT FOR TIKHONOV FUNCTIONALS WITH SPARSITY CONSTRAINTS: THEORY AND NUMERICAL COMPARISON OF STEP SIZE RULES
    Lorenz, Dirk A.
    Maass, Peter
    Muoi, Pham Q.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 437 - 463
  • [42] Tikhonov regularization with nonnegativity constraint
    Calvetti, D
    Lewis, B
    Reichel, L
    Sgallari, F
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 153 - 173
  • [43] Bayes information criterion for Tikhonov regularization with linear constraints: Application to spectral data estimation
    Carvalho, P.
    Santos, A.
    Dourado, A.
    Ribeiro, B.
    Proceedings - International Conference on Pattern Recognition, 2002, 16 (01): : 696 - 700
  • [44] The Tikhonov regularization method in elastoplasticity
    Azikri de Deus, Hilbeth P.
    Avila S., Claudio R., Jr.
    Belo, Ivan Moura
    Beck, Andre T.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 4687 - 4707
  • [45] Tikhonov regularization with a solution constraint
    Calvetti, D
    Reichel, L
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01): : 224 - 239
  • [46] A new Tikhonov regularization method
    Fuhry, Martin
    Reichel, Lothar
    NUMERICAL ALGORITHMS, 2012, 59 (03) : 433 - 445
  • [47] A modified Tikhonov regularization method
    Yang, Xiao-Juan
    Wang, Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 180 - 192
  • [48] TIKHONOV REGULARIZATION AND RANDOMIZED GSVD
    Wei, Yimin
    Xie, Pengpeng
    Zhang, Liping
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (02) : 649 - 675
  • [49] THE SATURATION PHENOMENA FOR TIKHONOV REGULARIZATION
    GROETSCH, CW
    KING, JT
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (OCT): : 254 - 262
  • [50] Extrapolation of Tikhonov Regularization Method
    Haemarik, U.
    Palm, R.
    Raus, T.
    MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (01) : 55 - 68