Regularization properties of Tikhonov regularizaron with sparsity constraints

被引:0
|
作者
Ramlau, Ronny [1 ]
机构
[1] Johann Rado Institute, Altenbergerstr. 69, 4040 Linz, Austria
关键词
Nonlinear equations - Mathematical operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the regularization properties of Tikhonov regularization with a sparsity (or Besov) penalty for the inversion of nonlinear operator equations. We propose an a posteriori parameter choice rule that ensures convergence in the used norm as the data error goes to zero. We show that the method of surrogate functionals will at least reconstruct a critical point of the Tikhonov functional. Finally, we present some numerical results for a nonlinear Hammerstein equation. Copyright © 2008, Kent State University.
引用
收藏
页码:54 / 74
相关论文
共 50 条
  • [31] Box Constraints and Weighted Sparsity Regularization for Identifying Sources in Elliptic PDEs
    Elvetun, Ole Loseth
    Nielsen, Bjorn Fredrik
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2024, : 779 - 812
  • [32] Structural properties of affine sparsity constraints
    Dong, Hongbo
    Ahn, Miju
    Pang, Jong-Shi
    MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 95 - 135
  • [33] Structural properties of affine sparsity constraints
    Hongbo Dong
    Miju Ahn
    Jong-Shi Pang
    Mathematical Programming, 2019, 176 : 95 - 135
  • [34] A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints
    Ronny Ramlau
    Gerd Teschke
    Numerische Mathematik, 2006, 104 : 177 - 203
  • [35] Bayes information criterion for Tikhonov regularization with linear constraints: Application to spectral data estimation
    Carvalho, P
    Santos, A
    Dourado, A
    Ribeiro, B
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 696 - 700
  • [36] Extrapolation Techniques of Tikhonov Regularization
    Xiao, Tingyan
    Zhao, Yuan
    Su, Guozhong
    OPTIMIZATION AND REGULARIZATION FOR COMPUTATIONAL INVERSE PROBLEMS AND APPLICATIONS, 2010, : 107 - 126
  • [37] Nonstationary Iterated Tikhonov Regularization
    M. Hanke
    C. W. Groetsch
    Journal of Optimization Theory and Applications, 1998, 98 : 37 - 53
  • [38] Nonstationary iterated Tikhonov regularization
    Hanke, M
    Groetsch, CW
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (01) : 37 - 53
  • [39] Iterated fractional Tikhonov regularization
    Bianchi, Davide
    Buccini, Alessandro
    Donatelli, Marco
    Serra-Capizzano, Stefano
    INVERSE PROBLEMS, 2015, 31 (05)
  • [40] A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints
    Ramlau, Ronny
    Teschke, Gerd
    NUMERISCHE MATHEMATIK, 2006, 104 (02) : 177 - 203