Regularization properties of Tikhonov regularizaron with sparsity constraints

被引:0
|
作者
Ramlau, Ronny [1 ]
机构
[1] Johann Rado Institute, Altenbergerstr. 69, 4040 Linz, Austria
关键词
Nonlinear equations - Mathematical operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the regularization properties of Tikhonov regularization with a sparsity (or Besov) penalty for the inversion of nonlinear operator equations. We propose an a posteriori parameter choice rule that ensures convergence in the used norm as the data error goes to zero. We show that the method of surrogate functionals will at least reconstruct a critical point of the Tikhonov functional. Finally, we present some numerical results for a nonlinear Hammerstein equation. Copyright © 2008, Kent State University.
引用
收藏
页码:54 / 74
相关论文
共 50 条
  • [21] Regularization properties of the sequential discrepancy principle for Tikhonov regularization in Banach spaces
    Anzengruber, Stephan W.
    Hofmann, Bernd
    Mathe, Peter
    APPLICABLE ANALYSIS, 2014, 93 (07) : 1382 - 1400
  • [22] Tikhonov-regularization-based projecting sparsity pursuit method for fluorescence molecular tomography reconstruction
    成家驹
    罗建文
    ChineseOpticsLetters, 2020, 18 (01) : 69 - 74
  • [23] Tikhonov-regularization-based projecting sparsity pursuit method for fluorescence molecular tomography reconstruction
    Cheng, Jiaju
    Luo, Jianwen
    CHINESE OPTICS LETTERS, 2020, 18 (01)
  • [24] Deconvolution of axisymmetric flame properties using Tikhonov regularization
    Daun, Kyle J.
    Thomson, Kevin A.
    Liu, Fengshan
    Smallwood, Greg J.
    APPLIED OPTICS, 2006, 45 (19) : 4638 - 4646
  • [25] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438
  • [26] Augmented Tikhonov regularization
    Jin, Bangti
    Zou, Jun
    INVERSE PROBLEMS, 2009, 25 (02)
  • [27] On fractional Tikhonov regularization
    Gerth, Daniel
    Klann, Esther
    Ramlau, Ronny
    Reichel, Lothar
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2015, 23 (06): : 611 - 625
  • [28] ON SIMPLIFIED TIKHONOV REGULARIZATION
    GUACANEME, J
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 58 (01) : 133 - 138
  • [29] Global seismic tomography with sparsity constraints: Comparison with smoothing and damping regularization
    Charlety, Jean
    Voronin, Sergey
    Nolet, Guust
    Loris, Ignace
    Simons, Frederik J.
    Sigloch, Karin
    Daubechies, Ingrid C.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2013, 118 (09) : 4887 - 4899
  • [30] Sparsity and smoothing multi-regularization constraints for blind image deblurring
    Gong, W.-G. (wggong@cqu.edu.cn), 1600, Chinese Academy of Sciences (24):