Motor imagery EEG fuzzy fusion of multiple classification

被引:0
|
作者
Xu L.-Q. [1 ]
Xiao G.-C. [1 ]
机构
[1] School of Computer, South West University of Science and Technology, Mianyang
来源
Xu, Lu-Qiang (xuluqiang@swust.edu.cn) | 1600年 / Univ. of Electronic Science and Technology of China卷 / 15期
关键词
Choquet fuzzy integral; Common spatial patterns (CSP); Electroencephalogram (EEG); Fuzzy information fusion; Linear discrimination analysis (LDA);
D O I
10.11989/JEST.1674-862X.5030716
中图分类号
学科分类号
摘要
Due to the volume conduction, electroencephalogram (EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density (PSD), and the other is common spatial patterns (CSP). Classifiers are designed based on the well-known linear discrimination analysis (LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.
引用
收藏
页码:58 / 63
页数:5
相关论文
共 50 条
  • [1] Motor Imagery EEG Fuzzy Fusion of Multiple Classification
    Lu-Qiang Xu
    Guang-Can Xiao
    [J]. Journal of Electronic Science and Technology, 2017, 15 (01) : 58 - 63
  • [2] Toward CNN-Based Motor-Imagery EEG Classification with Fuzzy Fusion
    Huang, Jian-Xue
    Hsieh, Chia-Ying
    Huang, Ya-Lin
    Wei, Chun-Shu
    [J]. INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (08) : 3812 - 3823
  • [3] Toward CNN-Based Motor-Imagery EEG Classification with Fuzzy Fusion
    Jian-Xue Huang
    Chia-Ying Hsieh
    Ya-Lin Huang
    Chun-Shu Wei
    [J]. International Journal of Fuzzy Systems, 2022, 24 : 3812 - 3823
  • [4] Motor Imagery EEG Classification with Biclustering Based Fuzzy Inference
    Sun, Jianjun
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (07) : 1486 - 1493
  • [5] Multiple tangent space projection for motor imagery EEG classification
    Sara Omari
    Adil Omari
    Mohamed Abderrahim
    [J]. Applied Intelligence, 2023, 53 : 21192 - 21200
  • [6] Multiple tangent space projection for motor imagery EEG classification
    Omari, Sara
    Omari, Adil
    Abderrahim, Mohamed
    [J]. APPLIED INTELLIGENCE, 2023, 53 (18) : 21192 - 21200
  • [7] EEG Motor Imagery Classification using Fusion Convolutional Neural Network
    Zouch, Wassim
    Echtioui, Amira
    [J]. ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 548 - 553
  • [8] Early-stage fusion of EEG and fNIRS improves classification of motor imagery
    Li, Yang
    Zhang, Xin
    Ming, Dong
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 16
  • [9] Spatial and Spectral Features Fusion for EEG Classification during Motor Imagery in BCI
    Tan, Chuanqi
    Sun, Fuchun
    Zhang, Wenchang
    Liu, Shaobo
    Liu, Chunfang
    [J]. 2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 309 - 312
  • [10] Multiple graph fusion based on Riemannian geometry for motor imagery classification
    Xiaofeng Xie
    Xiaokun Zou
    Tianyou Yu
    Rongnian Tang
    Yao Hou
    Feifei Qi
    [J]. Applied Intelligence, 2022, 52 : 9067 - 9079