EEG Motor Imagery Classification using Fusion Convolutional Neural Network

被引:0
|
作者
Zouch, Wassim [1 ]
Echtioui, Amira [2 ]
机构
[1] King Abdulaziz Univ KAU, Jeddah, Saudi Arabia
[2] Sfax Univ, ATMS Lab, Adv Technol Med & Signals, ENIS, Sfax, Tunisia
关键词
Convolution Neural Network (CNN); Motor Imagery (MI) Classification; Electroencephalography (EEG); PERFORMANCE; MULTILEVEL;
D O I
10.5220/0010975600003116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-Computer Interfaces (BCIs) are systems that can help people with limited motor skills interact with their environment without the need for outside help. Therefore, the signal is representative of a motor area in the active brain system. It is used to recognize MI-EEG tasks via a deep learning techniques such as Convolutional Neural Network (CNN), which poses a potential problem in maintaining the integrity of frequency-time-space information and then the need for exploring the CNNs fusion. In this work, we propose a method based on the fusion of three CNN (3CNNs). Our proposed method achieves an interesting precision, recall, F1-score, and accuracy of 61.88%, 62.50%, 61.47%, 64.75% respectively when tested on the 9 subjects from the BCI Competition IV 2a dataset. The 3CNNs model achieved higher results compared to the state-of-the-art.
引用
收藏
页码:548 / 553
页数:6
相关论文
共 50 条
  • [1] Fusion Convolutional Neural Network for Cross-Subject EEG Motor Imagery Classification
    Roots, Karel
    Muhammad, Yar
    Muhammad, Naveed
    [J]. COMPUTERS, 2020, 9 (03) : 1 - 9
  • [2] Motor Imagery EEG Signal Classification Using Optimized Convolutional Neural Network
    Thiyam, Deepa Beeta
    Raymond, Shelishiyah
    Avasarala, Padmanabha Sarma
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (08): : 273 - 279
  • [3] Comparison of Motor Imagery EEG Classification using Feedforward and Convolutional Neural Network
    Majoros, Tamas
    Oniga, Stefan
    [J]. IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 25 - 29
  • [4] Fusion Convolutional Neural Network for Multi-Class Motor Imagery of EEG Signals Classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    [J]. IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1642 - 1647
  • [5] Image-based Motor Imagery EEG Classification using Convolutional Neural Network
    Yang, Tao
    Phua, Kok Soon
    Yu, Juanhong
    Selvaratnam, Thevapriya
    Toh, Valerie
    Ng, Wai Hoe
    Ang, Kai Keng
    So, Rosa Q.
    [J]. 2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2019,
  • [6] Classification of EEG Motor Imagery Using Support Vector Machine and Convolutional Neural Network
    Wu, Yu-Te
    Huang, Tzu Hsuan
    Lin, Chun Yi
    Tsai, Sheng Jia
    Wang, Po-Shan
    [J]. 2018 INTERNATIONAL AUTOMATIC CONTROL CONFERENCE (CACS), 2018,
  • [7] MOTOR IMAGERY FOR EEG BIOMETRICS USING CONVOLUTIONAL NEURAL NETWORK
    Das, Rig
    Maiorana, Emanuele
    Campisi, Patrizio
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2062 - 2066
  • [8] Multilevel Weighted Feature Fusion Using Convolutional Neural Networks for EEG Motor Imagery Classification
    Amin, Syed Umar
    Alsulaiman, Mansour
    Muhammad, Ghulam
    Bencherif, Mohamed A.
    Hossain, M. Shamim
    [J]. IEEE ACCESS, 2019, 7 : 18940 - 18950
  • [9] SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification
    Liu, Ke
    Yang, Mingzhao
    Xing, Xin
    Yu, Zhuliang
    Wu, Wei
    [J]. JOURNAL OF NEURAL ENGINEERING, 2023, 20 (05)
  • [10] Motor imagery EEG classification using feedforward neural network
    Majoros, Tamas
    Oniga, Stefan
    Xie, Yu
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 53 : 235 - 244