Motor imagery EEG fuzzy fusion of multiple classification

被引:0
|
作者
Xu L.-Q. [1 ]
Xiao G.-C. [1 ]
机构
[1] School of Computer, South West University of Science and Technology, Mianyang
来源
Xu, Lu-Qiang (xuluqiang@swust.edu.cn) | 1600年 / Univ. of Electronic Science and Technology of China卷 / 15期
关键词
Choquet fuzzy integral; Common spatial patterns (CSP); Electroencephalogram (EEG); Fuzzy information fusion; Linear discrimination analysis (LDA);
D O I
10.11989/JEST.1674-862X.5030716
中图分类号
学科分类号
摘要
Due to the volume conduction, electroencephalogram (EEG) gives a rather blurred image of brain activities. It is a challenge for generating satisfactory performance with EEG. This paper studies the multiple areas fusion of EEG classifiers to improve the motor imagery EEG classification performance. Two feature extraction methods are employed to extract the feature from three different areas of EEG. One is power spectral density (PSD), and the other is common spatial patterns (CSP). Classifiers are designed based on the well-known linear discrimination analysis (LDA). The fusion of the individual classifiers is realized by means of the Choquet fuzzy integral. It is demonstrated that the proposed method comes with better performance compared with the individual classifier.
引用
收藏
页码:58 / 63
页数:5
相关论文
共 50 条
  • [41] Sparse Kernel Machines for motor imagery EEG classification
    Oikonomou, Vangelis P.
    Nikolopoulos, Spiros
    Petrantonakis, Panagiotis
    Kompatsiaris, Ioannis
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 207 - 210
  • [42] Motor Imagery EEG Classification Using Capsule Networks
    Ha, Kwon-Woo
    Jeong, Jin-Woo
    [J]. SENSORS, 2019, 19 (13)
  • [43] Nonnegative matrix factorization for motor imagery EEG classification
    Lee, Hyekyoung
    Cichocki, Andrzej
    Choi, Seungjin
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 250 - 259
  • [44] Simultaneous classification of motor imagery and SSVEP EEG signals
    Dehzangi, Omid
    Zou, Yuan
    Jafari, Roozbeh
    [J]. 2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 1303 - 1306
  • [45] Active Data Selection for Motor Imagery EEG Classification
    Tomida, Naoki
    Tanaka, Toshihisa
    Ono, Shunsuke
    Yamagishi, Masao
    Higashi, Hiroshi
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (02) : 458 - 467
  • [46] META-LEARNING FOR EEG MOTOR IMAGERY CLASSIFICATION
    Yu, Jian
    Duan, Lili
    Ji, Hongfei
    Li, Jie
    Pang, Zilong
    [J]. COMPUTING AND INFORMATICS, 2024, 43 (03) : 735 - 755
  • [47] A Novel Feature Fusion Approach for Classification of Motor Imagery EEG Based on Hierarchical Extreme Learning Machine
    Duan, Lijuan
    Lian, Zhaoyang
    Qiao, Yuanhua
    Chen, Juncheng
    Miao, Jun
    Li, Mingai
    [J]. COGNITIVE COMPUTATION, 2024, 16 (02) : 566 - 580
  • [48] Subject-Independent EEG Classification of Motor Imagery Based on Dual-Branch Feature Fusion
    Dong, Yanqing
    Wen, Xin
    Gao, Fang
    Gao, Chengxin
    Cao, Ruochen
    Xiang, Jie
    Cao, Rui
    [J]. BRAIN SCIENCES, 2023, 13 (07)
  • [49] Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion
    Amin, Syed Umar
    Alsulaiman, Mansour
    Muhammad, Ghulam
    Mekhtiche, Mohamed Amine
    Hossain, M. Shamim
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 101 : 542 - 554
  • [50] A Novel Feature Fusion Approach for Classification of Motor Imagery EEG Based on Hierarchical Extreme Learning Machine
    Lijuan Duan
    Zhaoyang Lian
    Yuanhua Qiao
    Juncheng Chen
    Jun Miao
    Mingai Li
    [J]. Cognitive Computation, 2024, 16 : 566 - 580