Multiple tangent space projection for motor imagery EEG classification

被引:0
|
作者
Sara Omari
Adil Omari
Mohamed Abderrahim
机构
[1] Universidad Carlos III de Madrid,Department of Electrical Engineering, Electronics and Automation
[2] Universidad Carlos III de Madrid,Department of Signal Theory and Communications
来源
Applied Intelligence | 2023年 / 53卷
关键词
BCI; MI; Riemannian geometry; Classification; Tangent space; Covariance matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Due to its non-invasiveness and easiness to implement, EEG signals decoding are in base of most based brain computer interfaces (BCI) studies. Given the non-stationary nature of these signals, a preprocessing phase is needed. An interesting idea to perform the preprocessing is the use of spatial covariance matrices. In the last years, spatial covariance matrices based preprocessing was extensively used in electroencephalography (EEG) signal processing and spatial filtering for Motor imagery (MI) BCI. Spatial covariance matrices lie in the Riemannian manifold of Symmetric Positive-Definite (SPD) matrices, therefore, the use of Riemannian geometry is attracting a lot of attention and showing to be simple, robust, and providing good performance. This paper explores the idea of enhancing the information provided to the classifier by the combination of different covariance matrices projections from their native Riemannian space to multiple class-depending tangent spaces. We demonstrate that this new approach provides a significant improvement in model accuracy.
引用
收藏
页码:21192 / 21200
页数:8
相关论文
共 50 条
  • [1] Multiple tangent space projection for motor imagery EEG classification
    Omari, Sara
    Omari, Adil
    Abderrahim, Mohamed
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21192 - 21200
  • [2] EEG Motor Imagery Classification: Tangent Space with Gate-Generated Weight Classifier
    Omari, Sara
    Omari, Adil
    Abu-Dakka, Fares
    Abderrahim, Mohamed
    BIOMIMETICS, 2024, 9 (08)
  • [3] Multiband tangent space mapping and feature selection for classification of EEG during motor imagery
    Islam, Md Rabiul
    Tanaka, Toshihisa
    Molla, Md Khademul Islam
    JOURNAL OF NEURAL ENGINEERING, 2018, 15 (04)
  • [4] Motor Imagery Classification using Subband Tangent Space Mapping
    Miah, Abu Saleh Musa
    Islam, Md. Rabiul
    Molla, Md. Khademul Islam
    2017 20TH INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2017,
  • [5] Motor Imagery EEG Fuzzy Fusion of Multiple Classification
    Lu-Qiang Xu
    Guang-Can Xiao
    Journal of Electronic Science and Technology, 2017, 15 (01) : 58 - 63
  • [6] Motor imagery EEG fuzzy fusion of multiple classification
    Xu L.-Q.
    Xiao G.-C.
    Xu, Lu-Qiang (xuluqiang@swust.edu.cn), 1600, Univ. of Electronic Science and Technology of China (15): : 58 - 63
  • [7] Classification of Motor Imagery BCI Using Multiband Tangent Space Mapping
    Islam, Md Rabiul
    Tanaka, Toshihisa
    Akter, Most Sheuli
    Molla, Md Khademul Islam
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [8] A Cross-Space CNN With Customized Characteristics for Motor Imagery EEG Classification
    Hu, Ying
    Liu, Yan
    Zhang, Siqi
    Zhang, Ting
    Dai, Bin
    Peng, Bo
    Yang, Hongbo
    Dai, Yakang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1554 - 1565
  • [9] Domain Transfer Multiple Kernel Boosting for Classification of EEG Motor Imagery Signals
    Dai, Mengxi
    Wang, Shuai
    Zheng, Dezhi
    Na, Rui
    Zhang, Shuailei
    IEEE ACCESS, 2019, 7 : 49951 - 49960
  • [10] EEG Classification for Multiclass Motor Imagery BCI
    Liu, Chong
    Wang, Hong
    Lu, Zhiguo
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4450 - 4453