Design of a 0.13μm SiGe Limiting Amplifier with 14.6 THz Gain-Bandwidth-Product

被引:1
|
作者
Park S. [1 ]
Du X.-Q. [1 ]
Grözing M. [1 ]
Berroth M. [1 ]
机构
[1] Institute of Electrical and Optical Communications Engineering (INT), University of Stuttgart, Stuttgart
来源
Park, Sehoon (qkrtpgns8966@gmail.com) | 1600年 / Copernicus GmbH, Germany卷 / 15期
关键词
Bandwidth enhancement - Gain-bandwidth products - Group delay variations - High frequency performance - High integration density - Post layout simulation - Power supply voltage - SiGe BiCMOS technology;
D O I
10.5194/ars-15-115-2017
中图分类号
学科分类号
摘要
This paper presents the design of a limiting amplifier with 1-to-3 fan-out implementation in a 0.13 μm SiGe BiCMOS technology and gives a detailed guideline to determine the circuit parameters of the amplifier for optimum high-frequency performance based on simplified gain estimations. The proposed design uses a Cherry-Hooper topology for bandwidth enhancement and is optimized for maximum group delay flatness to minimize phase distortion of the input signal. With regard to a high integration density and a small chip area, the design employs no passive inductors which might be used to boost the circuit bandwidth with inductive peaking. On a RLC-extracted post-layout simulation level, the limiting amplifier exhibits a gain-bandwidth-product of 14.6 THz with 56.6 dB voltage gain and 21.5 GHz 3 dB bandwidth at a peak-to-peak input voltage of 1.5 mV. The group delay variation within the 3 dB bandwidth is less than 0.5 ps and the power dissipation at a power supply voltage of 3 V including output drivers is 837 mW. © Author(s) 2017.
引用
收藏
页码:115 / 121
页数:6
相关论文
共 50 条
  • [31] High speed and high gain-bandwidth-product resonant-cavity InGaAs/InAlAs avalanche photodiodes
    Nie, H.
    Lenox, C.
    Kinsey, G.
    Yuan, P.
    Holmes Jr., A.L.
    Streetman, B.G.
    Campbell, J.C.
    Conference on Optical Fiber Communication, Technical Digest Series, 1999,
  • [32] LINEAR-IN-DECIBEL VARIABLE GAIN AMPLIFIER DESIGN IN 0.18μm SIGE BICMOS TECHNOLOGY
    Lu, Muting
    Kumar, Thangarasu Bharatha
    Yu, Xiaopeng
    Yeo, Kiat Seng
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2016, : 116 - 119
  • [33] A 2-stage D-band Power Amplifier with 7 dBm Output Power at 0.14 THz in a 0.13 μm SiGe Technology
    Zhang, Peng
    He, Lin
    Guo, Yufeng
    Fan, Xiaohua
    Gao, Hao
    2020 IEEE INTERNATIONAL SYMPOSIUM ON RADIO-FREQUENCY INTEGRATION TECHNOLOGY (RFIT), 2020, : 196 - 198
  • [34] A Broadband 75 to 140 GHz Amplifier in 0.13-μm SiGe HBT Process
    Ho, Ping-Han
    Lin, Yu-Hsuan
    Wang, Huei
    Meliani, Chafik
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 1368 - 1371
  • [35] A Broadband 75 to 140 GHz Amplifier in 0.13-μm SiGe HBT Process
    Ho, Ping-Han
    Lin, Yu-Hsuan
    Wang, Huei
    Meliani, Chafik
    2014 9TH EUROPEAN MICROWAVE INTEGRATED CIRCUIT CONFERENCE (EUMIC), 2014, : 424 - 427
  • [36] A Highly Efficient 240-GHz Power Amplifier in 0.13-μm SiGe
    Balaban, Kaan
    Kaynak, Mehmet
    Ulusoy, Ahmet Cagri
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2024, 34 (01): : 88 - 91
  • [37] A Differential D-Band Low-Noise Amplifier in 0.13 μm SiGe
    Aksoyak, Ibrahim Kagan
    Mock, Matthias
    Ulusoy, Ahmet Cagri
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (08) : 979 - 982
  • [38] A D-Band Cascode Amplifier With 24.3 dB Gain and 7.7 dBm Output Power in 0.13 μm SiGe BiCMOS Technology
    Hou, Debin
    Xiong, Yong-Zhong
    Goh, Wang-Ling
    Hong, Wei
    Madihian, Mohammad
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (04) : 191 - 193
  • [39] A Broadband 200 GHz Amplifier with 17 dB Gain and 18 mW DC-Power Consumption in 0.13 μm SiGe BiCMOS
    Fritsche, David
    Carta, Corrado
    Ellinger, Frank
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (11) : 790 - 792
  • [40] A 1.1 THz Gain-Bandwidth W-Band Amplifier in a 0.12 μm Silicon Germanium BiCMOS Process
    Kim, Joohwa
    Buckwalter, James F.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2010, 20 (11) : 625 - 627