Generalized probabilistic satisfiability through integer programming

被引:0
|
作者
Bona, Glauber De [1 ]
Cozman, Fabio G. [2 ]
Finger, Marcelo [1 ]
机构
[1] Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Sao Paulo, Brazil
[2] Escola Politécnica, Universidade de São Paulo, Avenida Professor Luciano Gualberto 380, Sao Paulo, Brazil
关键词
Boolean combinations - Integer Linear Programming - Mixed integer linear programming - Multi agent - Normal form - Phase transition phenomenon - Satisfiability;
D O I
10.1186/s13173-015-0028-x
中图分类号
学科分类号
摘要
Background: This paper studies the generalized probabilistic satisfiability (GPSAT) problem, where the probabilistic satisfiability (PSAT) problem is extended by allowing Boolean combinations of probabilistic assertions and nested probabilistic formulas. Methods: We introduce a normal form for this problem and show that both nesting of probabilities and multi-agent probabilities do not increase the expressivity of GPSAT. An algorithm to solve GPSAT instances in the normal form via mixed integer linear programming is proposed. Results: The implementation of the algorithm is used to explore the complexity profile of GPSAT, and it shows evidence of phase-transition phenomena. Conclusions: Even though GPSAT is considerably more expressive than PSAT, it can be handled using integer linear programming techniques. © 2015, De Bona et al.
引用
收藏
相关论文
共 50 条
  • [41] On generalized surrogate duality in mixed-integer nonlinear programming
    Benjamin Müller
    Gonzalo Muñoz
    Maxime Gasse
    Ambros Gleixner
    Andrea Lodi
    Felipe Serrano
    Mathematical Programming, 2022, 192 : 89 - 118
  • [42] SOLUTION OF A GENERALIZED INTEGER-VALUED PROGRAMMING PROBLEM.
    Semenova, N.V.
    1600, (20):
  • [43] Generalized integer linear programming formulation for optimal PMU placement
    Gou, Bei
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (03) : 1099 - 1104
  • [44] A NOTE ON GENERALIZED LAGRANGE MULTIPLIER SOLUTION TO AN INTEGER PROGRAMMING PROBLEM
    NEMHAUSER, GL
    ULLMANN, Z
    OPERATIONS RESEARCH, 1968, 16 (02) : 450 - +
  • [45] EXTENSION OF GENERALIZED LINEAR-PROGRAMMING TO THE MIXED INTEGER CASE
    HANSEN, P
    MINOUX, M
    LABBE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (13): : 569 - 572
  • [46] Easy Cases of Probabilistic Satisfiability
    Kim Allan Andersen
    Daniele Pretolani
    Annals of Mathematics and Artificial Intelligence, 2001, 33 : 69 - 91
  • [47] Probabilistic satisfiability with imprecise probabilities
    Hansen, P
    Jaumard, B
    de Aragao, MP
    Chauny, F
    Perron, S
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2000, 24 (2-3) : 171 - 189
  • [48] A Refuted Conjecture on Probabilistic Satisfiability
    Finger, Marcelo
    De Bona, Glauber
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2010, 2010, 6404 : 293 - 302
  • [49] Easy cases of probabilistic satisfiability
    Andersen, KA
    Pretolani, D
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2001, 33 (01) : 69 - 91
  • [50] Generalized modal satisfiability
    Bauland, M
    Hemaspaandra, E
    Schnoor, H
    Schnoor, I
    STACS 2006, PROCEEDINGS, 2006, 3884 : 500 - 511