Generalized probabilistic satisfiability through integer programming

被引:0
|
作者
Bona, Glauber De [1 ]
Cozman, Fabio G. [2 ]
Finger, Marcelo [1 ]
机构
[1] Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Sao Paulo, Brazil
[2] Escola Politécnica, Universidade de São Paulo, Avenida Professor Luciano Gualberto 380, Sao Paulo, Brazil
关键词
Boolean combinations - Integer Linear Programming - Mixed integer linear programming - Multi agent - Normal form - Phase transition phenomenon - Satisfiability;
D O I
10.1186/s13173-015-0028-x
中图分类号
学科分类号
摘要
Background: This paper studies the generalized probabilistic satisfiability (GPSAT) problem, where the probabilistic satisfiability (PSAT) problem is extended by allowing Boolean combinations of probabilistic assertions and nested probabilistic formulas. Methods: We introduce a normal form for this problem and show that both nesting of probabilities and multi-agent probabilities do not increase the expressivity of GPSAT. An algorithm to solve GPSAT instances in the normal form via mixed integer linear programming is proposed. Results: The implementation of the algorithm is used to explore the complexity profile of GPSAT, and it shows evidence of phase-transition phenomena. Conclusions: Even though GPSAT is considerably more expressive than PSAT, it can be handled using integer linear programming techniques. © 2015, De Bona et al.
引用
收藏
相关论文
共 50 条
  • [31] Integer programming for the generalized high school timetabling problem
    Simon Kristiansen
    Matias Sørensen
    Thomas R. Stidsen
    Journal of Scheduling, 2015, 18 : 377 - 392
  • [32] Generalized probabilistic satisfiability and applications to modelling attackers with side-channel capabilities
    Caleiro, Carlos
    Casal, Filipe
    Mordido, Andreia
    THEORETICAL COMPUTER SCIENCE, 2019, 781 : 39 - 62
  • [33] Inference in Credal Networks Through Integer Programming
    de Campos, Cassio Polpo
    Cozman, Fabio Gagliardi
    ISIPTA 07-PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY:THEORIES AND APPLICATIONS, 2007, : 145 - +
  • [34] Logic programming with satisfiability
    Codish, Michael
    Lagoon, Vitaly
    Stuckey, Peter J.
    THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2008, 8 (01) : 121 - 128
  • [35] DIPIT: Dual Interval Probabilistic Integer Programming for Solid Waste Management
    Liu, Z. F.
    Huang, G. H.
    Liao, R. F.
    He, L.
    JOURNAL OF ENVIRONMENTAL INFORMATICS, 2009, 14 (01) : 66 - 73
  • [36] Satisfiability Modulo Exponential Integer Arithmetic
    Frohn, Florian
    Giesl, Juergen
    AUTOMATED REASONING, IJCAR 2024, PT I, 2024, 14739 : 344 - 365
  • [37] Analysis of a generalized Linear Ordering Problem via integer programming
    Mendez-Diaz, Isabel
    Vulcano, Gustavo
    Zabala, Paula
    DISCRETE APPLIED MATHEMATICS, 2019, 271 : 93 - 107
  • [38] FUZZY MULTICRITERIA INTEGER PROGRAMMING VIA FUZZY GENERALIZED NETWORKS
    IGNIZIO, JP
    DANIELS, SC
    FUZZY SETS AND SYSTEMS, 1983, 10 (03) : 261 - 270
  • [39] On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming
    Muller, Benjamin
    Munoz, Gonzalo
    Gasse, Maxime
    Gleixner, Ambros
    Lodi, Andrea
    Serrano, Felipe
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 322 - 337
  • [40] On generalized surrogate duality in mixed-integer nonlinear programming
    Mueller, Benjamin
    Munoz, Gonzalo
    Gasse, Maxime
    Gleixner, Ambros
    Lodi, Andrea
    Serrano, Felipe
    MATHEMATICAL PROGRAMMING, 2022, 192 (1-2) : 89 - 118