Generalized probabilistic satisfiability through integer programming

被引:0
|
作者
Bona, Glauber De [1 ]
Cozman, Fabio G. [2 ]
Finger, Marcelo [1 ]
机构
[1] Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Sao Paulo, Brazil
[2] Escola Politécnica, Universidade de São Paulo, Avenida Professor Luciano Gualberto 380, Sao Paulo, Brazil
关键词
Boolean combinations - Integer Linear Programming - Mixed integer linear programming - Multi agent - Normal form - Phase transition phenomenon - Satisfiability;
D O I
10.1186/s13173-015-0028-x
中图分类号
学科分类号
摘要
Background: This paper studies the generalized probabilistic satisfiability (GPSAT) problem, where the probabilistic satisfiability (PSAT) problem is extended by allowing Boolean combinations of probabilistic assertions and nested probabilistic formulas. Methods: We introduce a normal form for this problem and show that both nesting of probabilities and multi-agent probabilities do not increase the expressivity of GPSAT. An algorithm to solve GPSAT instances in the normal form via mixed integer linear programming is proposed. Results: The implementation of the algorithm is used to explore the complexity profile of GPSAT, and it shows evidence of phase-transition phenomena. Conclusions: Even though GPSAT is considerably more expressive than PSAT, it can be handled using integer linear programming techniques. © 2015, De Bona et al.
引用
收藏
相关论文
共 50 条
  • [21] Programming of channels in generalized probabilistic theories
    Miyadera, Takayuki
    Takakura, Ryo
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)
  • [22] GENERALIZED TRAVELING SALESMAN PROBLEM THROUGH N-SETS OF NODES - AN INTEGER PROGRAMMING APPROACH
    LAPORTE, G
    NOBERT, Y
    INFOR, 1983, 21 (01) : 61 - 75
  • [23] Probabilistic satisfiability and decomposition
    Nguetse, GBD
    Hansen, P
    Jaumard, B
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING AND UNCERTAINTY, 1995, 946 : 151 - 161
  • [24] An Integer Programming Approach to Control Problems in Probabilistic Boolean Networks
    Kobayashi, Koichi
    Hiraishi, Kunihiko
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6710 - 6715
  • [25] SOLUTION OF A GENERALIZED INTEGER-VALUED PROGRAMMING PROBLEM
    SEMENOVA, NV
    CYBERNETICS, 1984, 20 (05): : 641 - 651
  • [26] Generalized coefficient strengthening cuts for mixed integer programming
    Chen, Wei-Kun
    Chen, Liang
    Yang, Mu-Ming
    Dai, Yu-Hong
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (01) : 289 - 306
  • [27] Integer programming for the generalized high school timetabling problem
    Kristiansen, Simon
    Sorensen, Matias
    Stidsen, Thomas R.
    JOURNAL OF SCHEDULING, 2015, 18 (04) : 377 - 392
  • [28] Generalized coefficient strengthening cuts for mixed integer programming
    Wei-Kun Chen
    Liang Chen
    Mu-Ming Yang
    Yu-Hong Dai
    Journal of Global Optimization, 2018, 70 : 289 - 306
  • [29] Generalized nonlinear Lagrangian formulation for bounded integer programming
    Xu, YF
    Liu, CL
    Li, D
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 33 (02) : 257 - 272
  • [30] Generalized Nonlinear Lagrangian Formulation for Bounded Integer Programming
    Yifan Xu
    Chunli Liu
    Duan Li
    Journal of Global Optimization, 2005, 33 : 257 - 272