Generalized probabilistic satisfiability through integer programming

被引:0
|
作者
Bona, Glauber De [1 ]
Cozman, Fabio G. [2 ]
Finger, Marcelo [1 ]
机构
[1] Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, Sao Paulo, Brazil
[2] Escola Politécnica, Universidade de São Paulo, Avenida Professor Luciano Gualberto 380, Sao Paulo, Brazil
关键词
Boolean combinations - Integer Linear Programming - Mixed integer linear programming - Multi agent - Normal form - Phase transition phenomenon - Satisfiability;
D O I
10.1186/s13173-015-0028-x
中图分类号
学科分类号
摘要
Background: This paper studies the generalized probabilistic satisfiability (GPSAT) problem, where the probabilistic satisfiability (PSAT) problem is extended by allowing Boolean combinations of probabilistic assertions and nested probabilistic formulas. Methods: We introduce a normal form for this problem and show that both nesting of probabilities and multi-agent probabilities do not increase the expressivity of GPSAT. An algorithm to solve GPSAT instances in the normal form via mixed integer linear programming is proposed. Results: The implementation of the algorithm is used to explore the complexity profile of GPSAT, and it shows evidence of phase-transition phenomena. Conclusions: Even though GPSAT is considerably more expressive than PSAT, it can be handled using integer linear programming techniques. © 2015, De Bona et al.
引用
收藏
相关论文
共 50 条
  • [1] Probabilistic satisfiability and coherence checking through integer programming
    Cozman, Fabio G.
    di Ianni, Lucas Fargoni
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2015, 58 : 57 - 70
  • [2] Generalized Probabilistic Satisfiability
    De Bona, Glauber
    Cozman, Fabio G.
    Finger, Marcelo
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 182 - 188
  • [3] Generalized Probabilistic Satisfiability
    Caleiro C.
    Casal F.
    Mordido A.
    Electronic Notes in Theoretical Computer Science, 2017, 332 : 39 - 56
  • [4] A probabilistic study of generalized solution concepts in satisfiability testing and constraint programming
    Zhang, Peng
    Gao, Yong
    THEORETICAL COMPUTER SCIENCE, 2017, 657 : 98 - 110
  • [5] Satisfiability and integer programming as complementary tools
    Li, RM
    Zhou, D
    Du, DL
    ASP-DAC 2004: PROCEEDINGS OF THE ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, 2004, : 880 - 883
  • [6] Classical Generalized Probabilistic Satisfiability
    Caleiro, Carlos
    Casal, Filipe
    Mordido, Andreia
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 908 - 914
  • [7] GENERALIZED INTEGER PROGRAMMING
    Chadha, S. S.
    Chadha, Veena
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2013, 47 (03): : 53 - 60
  • [8] Exact Clustering via Integer Programming and Maximum Satisfiability
    Miyauchi, Atsushi
    Sonobe, Tomohiro
    Sukegawa, Noriyoshi
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 1387 - 1394
  • [9] PROBABILISTIC ESTIMATES FOR THE GENERALIZED MAXIMUM SATISFIABILITY PROBLEM
    COCHAND, M
    DISCRETE APPLIED MATHEMATICS, 1994, 49 (1-3) : 143 - 163
  • [10] Bounds for probabilistic integer programming problems
    Dentcheva, D
    Prékopa, A
    Ruszczynski, A
    DISCRETE APPLIED MATHEMATICS, 2002, 124 (1-3) : 55 - 65