Hyperspectral unmixing of autoencoder based on attention and total variation

被引:0
|
作者
Wang, Ying [1 ,2 ]
Zhang, Mingbo [3 ]
Zuo, Fang [4 ,5 ]
机构
[1] Institute of Intelligence Networks System, Henan University, Henan, Kaifeng, China
[2] Henan Experimental Teaching Demonstration Centre of Modern Network Technology, Henan University, Henan, Kaifeng, China
[3] Intelligent Data Processing Engineering Research Center of Henan Province, Henan University, Henan, Kaifeng, China
[4] Henan International Joint Laboratory of Theories and Key Technologies on Intelligence Networks, Henan University, Henan, Kaifeng, China
[5] Subject Innovation and Intelligence Introduction Base of Henan Higher Educational Institution - Intelligent Information Processing Innovation and Intelligence Introduction Base of Henan University Software Engineering, Henan University, Henan, Kaifeng, Chi
关键词
Engineering Village;
D O I
123280B
中图分类号
学科分类号
摘要
Attention - Attention mechanisms - Auto encoders - Deep learning - Hidden layers - Hyperspectral unmixing - Learning process - Low dimensional - Total-variation - Unmixing
引用
收藏
相关论文
共 50 条
  • [21] Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks
    Han Z.
    Gao L.
    Zhang B.
    Sun X.
    Li Q.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 388 - 400
  • [22] A Joint Multiscale Graph Attention and Classify-Driven Autoencoder Framework for Hyperspectral Unmixing
    Cao, Feilong
    Situ, Yujia
    Ye, Hailiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [23] An Attention-Based 3D Convolutional Autoencoder for Few-Shot Hyperspectral Unmixing and Classification
    Li, Chunyu
    Cai, Rong
    Yu, Junchuan
    REMOTE SENSING, 2023, 15 (02)
  • [24] Weighted Total Variation Regularized Blind Unmixing for Hyperspectral Image
    Song, Hanjie
    Wu, Xing
    Zou, Anqi
    Liu, Yang
    Zou, Yongliao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
    Su, Yuanchao
    Li, Jun
    Plaza, Antonio
    Marinoni, Andrea
    Gamba, Paolo
    Chakravortty, Somdatta
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4309 - 4321
  • [26] HYPERSPECTRAL IMAGE UNMIXING USING AUTOENCODER CASCADE
    Guo, Rui
    Wang, Wei
    Qi, Hairong
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [27] Hyperspectral Unmixing Using a Neural Network Autoencoder
    Palsson, Burkni
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE ACCESS, 2018, 6 : 25646 - 25656
  • [28] MAHUM: A Multitasks Autoencoder Hyperspectral Unmixing Model
    Chen, Jia
    Gamba, Paolo
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Deep Denoising Autoencoder Networks for Hyperspectral Unmixing
    Wen, Keyao
    Kong, Fanqiang
    Hu, Kedi
    Zhao, Shunmin
    Lecture Notes in Electrical Engineering, 2021, 654 LNEE : 447 - 452
  • [30] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549