MAHUM: A Multitasks Autoencoder Hyperspectral Unmixing Model

被引:2
|
作者
Chen, Jia [1 ]
Gamba, Paolo [1 ]
Li, Jun [2 ]
机构
[1] Univ Pavia, Dept Elect Biomed & Comp Engn, I-27100 Pavia, Italy
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430079, Peoples R China
关键词
Index Terms-3-D convolutional neural network (3DCNN); autoencoder (AE); hyperspectral imaging; multitask learning; remote sensing; spectral unmixing (SU); ENDMEMBER EXTRACTION; ALGORITHM; MIXTURE;
D O I
10.1109/TGRS.2023.3304484
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral unmixing is a crucial task in hyperspectral image processing and analysis. It aims to decompose mixed pixels into pure spectral signatures and their associated abundances. However, most current unmixing methods ignore the reality that the same pixel of a hyperspectral image has many different reflections simultaneously. To address this issue, we propose a multitask autoencoding model for multiple reflections, which can improve the algorithm's robustness in complex environments. Our proposed framework uses 3-D convolutional neural network (3DCNN)-based networks to jointly learn spectral-spatial priors and adapt to different pixels by complementing the advantages of other unmixing methods. The proposed method can quantitatively evaluate each area of data, which helps improve the algorithm's interpretability. This article presents a multitasks autoencoder hyperspectral unmixing model (MAHUM), which stacks multiple models to deal with various reflections of complex terrain. We also perform sensitivity analysis on some parameters and show experiment results demonstrating our method's ability to express the adaptability of different materials in different methods quantitatively.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Adversarial Autoencoder Network for Hyperspectral Unmixing
    Jin, Qiwen
    Ma, Yong
    Fan, Fan
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4555 - 4569
  • [2] Model-Based Deep Autoencoder Networks for Nonlinear Hyperspectral Unmixing
    Li, Haoqing
    Borsoi, Ricardo A.
    Imbiriba, Tales
    Closas, Pau
    Bermudez, Jose C. M.
    Erdogmus, Deniz
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] Hyperspectral unmixing based on adversarial autoencoder network
    Jin Q.
    Ma Y.
    Fan F.
    Huang J.
    Li H.
    Mei X.
    National Remote Sensing Bulletin, 2023, 27 (08): : 1964 - 1974
  • [4] DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
    Su, Yuanchao
    Li, Jun
    Plaza, Antonio
    Marinoni, Andrea
    Gamba, Paolo
    Chakravortty, Somdatta
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4309 - 4321
  • [5] HYPERSPECTRAL IMAGE UNMIXING USING AUTOENCODER CASCADE
    Guo, Rui
    Wang, Wei
    Qi, Hairong
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [6] Hyperspectral Unmixing Using a Neural Network Autoencoder
    Palsson, Burkni
    Sigurdsson, Jakob
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    IEEE ACCESS, 2018, 6 : 25646 - 25656
  • [7] Deep Denoising Autoencoder Networks for Hyperspectral Unmixing
    Wen, Keyao
    Kong, Fanqiang
    Hu, Kedi
    Zhao, Shunmin
    Lecture Notes in Electrical Engineering, 2021, 654 LNEE : 447 - 452
  • [8] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549
  • [9] Hyperspectral unmixing using deep convolutional autoencoder
    Elkholy, Menna M.
    Mostafa, Marwa
    Ebied, Hala M.
    Tolba, Mohamed F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4797 - 4817
  • [10] Hyperspectral Unmixing with AutoEncoder Network in Wavelet Domain
    Zhan, Chenyang
    Liu, Hongyi
    Zhang, Jun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3259 - 3262