MAHUM: A Multitasks Autoencoder Hyperspectral Unmixing Model

被引:2
|
作者
Chen, Jia [1 ]
Gamba, Paolo [1 ]
Li, Jun [2 ]
机构
[1] Univ Pavia, Dept Elect Biomed & Comp Engn, I-27100 Pavia, Italy
[2] China Univ Geosci, Sch Comp Sci, Wuhan 430079, Peoples R China
关键词
Index Terms-3-D convolutional neural network (3DCNN); autoencoder (AE); hyperspectral imaging; multitask learning; remote sensing; spectral unmixing (SU); ENDMEMBER EXTRACTION; ALGORITHM; MIXTURE;
D O I
10.1109/TGRS.2023.3304484
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral unmixing is a crucial task in hyperspectral image processing and analysis. It aims to decompose mixed pixels into pure spectral signatures and their associated abundances. However, most current unmixing methods ignore the reality that the same pixel of a hyperspectral image has many different reflections simultaneously. To address this issue, we propose a multitask autoencoding model for multiple reflections, which can improve the algorithm's robustness in complex environments. Our proposed framework uses 3-D convolutional neural network (3DCNN)-based networks to jointly learn spectral-spatial priors and adapt to different pixels by complementing the advantages of other unmixing methods. The proposed method can quantitatively evaluate each area of data, which helps improve the algorithm's interpretability. This article presents a multitasks autoencoder hyperspectral unmixing model (MAHUM), which stacks multiple models to deal with various reflections of complex terrain. We also perform sensitivity analysis on some parameters and show experiment results demonstrating our method's ability to express the adaptability of different materials in different methods quantitatively.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Spectral Variability-Aware Cascaded Autoencoder for Hyperspectral Unmixing
    Zhang, Ge
    Mei, Shaohui
    Wang, Yufei
    Han, Huiyang
    Feng, Yan
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [32] Improving Autoencoder Training Performance for Hyperspectral Unmixing with Network Reinitialisation
    Ksiazek, Kamil
    Glomb, Przemyslaw
    Romaszewski, Michal
    Cholewa, Michal
    Grabowski, Bartosz
    Buza, Krisztian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT I, 2022, 13231 : 391 - 403
  • [33] Gated Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing
    Hua, Ziqiang
    Li, Xiaorun
    Jiang, Jianfeng
    Zhao, Liaoying
    REMOTE SENSING, 2021, 13 (16)
  • [34] Hypergraph Regularized Deep Autoencoder for Unsupervised Unmixing Hyperspectral Images
    张泽兴
    杨斌
    JournalofDonghuaUniversity(EnglishEdition), 2023, 40 (01) : 8 - 17
  • [35] Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks
    Han Z.
    Gao L.
    Zhang B.
    Sun X.
    Li Q.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 388 - 400
  • [36] EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing
    Ozkan, Savas
    Kaya, Berk
    Akar, Gozde Bozdagi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (01): : 482 - 496
  • [37] Multi-stage convolutional autoencoder network for hyperspectral unmixing
    Yu, Yang
    Ma, Yong
    Mei, Xiaoguang
    Huang, Jun
    Li, Hao
    Fan, Fan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 113
  • [38] NMF-SAE: AN INTERPRETABLE SPARSE AUTOENCODER FOR HYPERSPECTRAL UNMIXING
    Xiong, Fengchao
    Zhou, Jun
    Ye, Minchao
    Lu, Jianfeng
    Qian, Yuntao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1865 - 1869
  • [39] Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks
    Wang, Mou
    Zhao, Min
    Chen, Jie
    Rahardja, Susanto
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (09) : 1467 - 1471
  • [40] Dual Branch Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing
    Hua, Ziqiang
    Li, Xiaorun
    Feng, Yueming
    Zhao, Liaoying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19