Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks

被引:118
|
作者
Wang, Mou [1 ,2 ,3 ]
Zhao, Min [1 ,2 ,3 ]
Chen, Jie [1 ,2 ,3 ]
Rahardja, Susanto [1 ,2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Shaanxi, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Dev Inst, Shenzhen 518057, Peoples R China
关键词
Autoencoder network; deep learning; hyperspectral imaging; nonlinear spectral unmixing;
D O I
10.1109/LGRS.2019.2900733
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms.
引用
收藏
页码:1467 / 1471
页数:5
相关论文
共 50 条
  • [1] Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks
    Han Z.
    Gao L.
    Zhang B.
    Sun X.
    Li Q.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 388 - 400
  • [2] Model-Based Deep Autoencoder Networks for Nonlinear Hyperspectral Unmixing
    Li, Haoqing
    Borsoi, Ricardo A.
    Imbiriba, Tales
    Closas, Pau
    Bermudez, Jose C. M.
    Erdogmus, Deniz
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
    Su, Yuanchao
    Li, Jun
    Plaza, Antonio
    Marinoni, Andrea
    Gamba, Paolo
    Chakravortty, Somdatta
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4309 - 4321
  • [4] Deep Denoising Autoencoder Networks for Hyperspectral Unmixing
    Wen, Keyao
    Kong, Fanqiang
    Hu, Kedi
    Zhao, Shunmin
    Lecture Notes in Electrical Engineering, 2021, 654 LNEE : 447 - 452
  • [5] Nonlinear Unmixing via Deep Autoencoder Networks for Generalized Bilinear Model
    Zhang, Jinhua
    Zhang, Xiaohua
    Meng, Hongyun
    Sun, Caihao
    Wang, Li
    Cao, Xianghai
    REMOTE SENSING, 2022, 14 (20)
  • [6] Deep Autoencoder for Hyperspectral Unmixing via Global-Local Smoothing
    Xu, Xia
    Song, Xinyu
    Li, Tao
    Shi, Zhenwei
    Pan, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Hyperspectral unmixing using deep convolutional autoencoder
    Elkholy, Menna M.
    Mostafa, Marwa
    Ebied, Hala M.
    Tolba, Mohamed F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4797 - 4817
  • [8] Hyperspectral Unmixing via Deep Convolutional Neural Networks
    Zhang, Xiangrong
    Sun, Yujia
    Zhang, Jingyan
    Wu, Peng
    Jiao, Licheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1755 - 1759
  • [9] Residual Dense Autoencoder Network for Nonlinear Hyperspectral Unmixing
    Yang, Xu
    Chen, Jianguo
    Wang, Chengbin
    Chen, Zihao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5580 - 5595
  • [10] Spatial-Spectral Autoencoder Networks for Hyperspectral Unmixing
    Huang, Yongfa
    Li, Jie
    Qi, Lin
    Wang, Ying
    Gao, Xinbo
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2396 - 2399