Hyperspectral unmixing of autoencoder based on attention and total variation

被引:0
|
作者
Wang, Ying [1 ,2 ]
Zhang, Mingbo [3 ]
Zuo, Fang [4 ,5 ]
机构
[1] Institute of Intelligence Networks System, Henan University, Henan, Kaifeng, China
[2] Henan Experimental Teaching Demonstration Centre of Modern Network Technology, Henan University, Henan, Kaifeng, China
[3] Intelligent Data Processing Engineering Research Center of Henan Province, Henan University, Henan, Kaifeng, China
[4] Henan International Joint Laboratory of Theories and Key Technologies on Intelligence Networks, Henan University, Henan, Kaifeng, China
[5] Subject Innovation and Intelligence Introduction Base of Henan Higher Educational Institution - Intelligent Information Processing Innovation and Intelligence Introduction Base of Henan University Software Engineering, Henan University, Henan, Kaifeng, Chi
关键词
Engineering Village;
D O I
123280B
中图分类号
学科分类号
摘要
Attention - Attention mechanisms - Auto encoders - Deep learning - Hidden layers - Hyperspectral unmixing - Learning process - Low dimensional - Total-variation - Unmixing
引用
收藏
相关论文
共 50 条
  • [31] Hyperspectral unmixing using deep convolutional autoencoder
    Elkholy, Menna M.
    Mostafa, Marwa
    Ebied, Hala M.
    Tolba, Mohamed F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (12) : 4797 - 4817
  • [32] Hyperspectral Unmixing with AutoEncoder Network in Wavelet Domain
    Zhan, Chenyang
    Liu, Hongyi
    Zhang, Jun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3259 - 3262
  • [33] Adversarially Regularized Autoencoder for Hyperspectral Image Unmixing
    Holland, Wesley J.
    Du, Qian
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVI, 2020, 11533
  • [34] HYPERSPECTRAL UNMIXING BASED ON L1-L2 SPARSITY AND TOTAL VARIATION
    Sun, Le
    Jeon, Byeungwoo
    Zheng, Yuhui
    Chen, Yunjie
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4349 - 4353
  • [35] Model-Based Deep Autoencoder Networks for Nonlinear Hyperspectral Unmixing
    Li, Haoqing
    Borsoi, Ricardo A.
    Imbiriba, Tales
    Closas, Pau
    Bermudez, Jose C. M.
    Erdogmus, Deniz
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] Hyperspectral unmixing using weighted sparse regression with total variation regularization
    Ren, Longfei
    Ma, Zheng
    Bovolo, Francesca
    Hu, Jianming
    Bruzzone, Lorenzo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 6124 - 6151
  • [37] Hyperspectral Unmixing Using Double Reweighted Sparse Regression and Total Variation
    Wang, Rui
    Li, Heng-Chao
    Pizurica, Aleksandra
    Li, Jun
    Plaza, Antonio
    Emery, William J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1146 - 1150
  • [38] Hyperspectral Unmixing via Total Variation Regularized Nonnegative Tensor Factorization
    Xiong, Fengchao
    Qian, Yuntao
    Zhou, Jun
    Tang, Yuan Yan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2341 - 2357
  • [39] Mutual Incoherence and Relative Total Variation Regularizations for Blind Hyperspectral Unmixing
    Song, Fu-Xin
    Kan, Chao
    Deng, Shi-Wen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [40] Blind Hyperspectral Unmixing Using Total Variation and lq Sparse Regularization
    Sigurdsson, Jakob
    Ulfarsson, Magnus Orn
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (11): : 6371 - 6384