Hierarchical universal matrices for sensitivity analysis by curvilinear finite elements

被引:0
|
作者
Tóth, László Levente [1 ]
Dyczij-Edlinger, Romanus [1 ]
机构
[1] Saarland University, Saarbrücken,D-66123, Germany
关键词
Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A new method for calculating the geometric sensitivities of curvilinear finite elements is presented. Approximating the relevant metric tensors by hierarchical orthogonal polynomials enables the sensitivity matrices to be integrated analytically. The resulting numerical method is based on pre-calculated universal matrices and achieves significant savings in computer runtime over conventional techniques based on numerical integration. Moreover, there exists a representation limit for the geometry, i.e., the degree of basis functions fully determines a critical order of the geometry expansion, beyond which the derivatives of the finite-element matrices will remain constant. To validate the suggested approach, a numerical example is presented. © 2019 Applied Computational Electromagnetics Society (ACES). All rights reserved.
引用
收藏
页码:209 / 210
相关论文
共 50 条
  • [31] Efficient computation of the minimum of shape quality measures on curvilinear finite elements
    Johnen, A.
    Geuzaine, C.
    Toulorge, T.
    Remacle, J. -F.
    25TH INTERNATIONAL MESHING ROUNDTABLE, 2016, 163 : 328 - 339
  • [32] CALCULATION OF CURVILINEAR TUBULAR SHELLS BY THE SEMIANALYTIC METHOD OF FINITE ELEMENTS.
    Savula, Ya.G.
    Shinkarenko, G.A.
    Mechanics of solids, 1980, 15 (02) : 135 - 139
  • [33] High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics
    Dobrev, Veselin A.
    Ellis, Truman E.
    Kolev, Tzanio V.
    Rieben, Robert N.
    COMPUTERS & FLUIDS, 2013, 83 : 58 - 69
  • [34] ON THE SPARSITY PATTERNS OF HIERARCHICAL FINITE-ELEMENT MATRICES
    MAUBACH, J
    LECTURE NOTES IN MATHEMATICS, 1990, 1457 : 79 - 104
  • [35] Efficient computation of the minimum of shape quality measures on curvilinear finite elements
    Johnen, A.
    Geuzaine, C.
    Toulorge, T.
    Remacle, J. -F.
    COMPUTER-AIDED DESIGN, 2018, 103 : 24 - 33
  • [36] An analysis of composite beams by means of hierarchical finite elements and a variables separation method
    Polit, O.
    Gallimard, L.
    Vidal, P.
    D'Ottavio, M.
    Giunta, G.
    Belouettar, S.
    COMPUTERS & STRUCTURES, 2015, 158 : 15 - 29
  • [37] Hierarchical hp finite elements in hybrid domains
    Sherwin, SJ
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 27 (01) : 109 - 119
  • [38] Hierarchical tangential vector finite elements for tetrahedra
    Andersen, LS
    Volakis, JL
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - ANTENNAS: GATEWAYS TO THE GLOBAL NETWORK, VOLS 1-4, 1998, : 240 - 243
  • [39] Hierarchical Polynomials and Vector Elements for Finite Methods
    Graglia, Roberto D.
    Peterson, Andrew F.
    Andriulli, Francesco P.
    ICEAA: 2009 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, VOLS 1 AND 2, 2009, : 1050 - +
  • [40] SHAPE SENSITIVITY BY FINITE-ELEMENTS
    BRAIBANT, V
    JOURNAL OF STRUCTURAL MECHANICS, 1986, 14 (02): : 209 - 228