Hierarchical universal matrices for sensitivity analysis by curvilinear finite elements

被引:0
|
作者
Tóth, László Levente [1 ]
Dyczij-Edlinger, Romanus [1 ]
机构
[1] Saarland University, Saarbrücken,D-66123, Germany
关键词
Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A new method for calculating the geometric sensitivities of curvilinear finite elements is presented. Approximating the relevant metric tensors by hierarchical orthogonal polynomials enables the sensitivity matrices to be integrated analytically. The resulting numerical method is based on pre-calculated universal matrices and achieves significant savings in computer runtime over conventional techniques based on numerical integration. Moreover, there exists a representation limit for the geometry, i.e., the degree of basis functions fully determines a critical order of the geometry expansion, beyond which the derivatives of the finite-element matrices will remain constant. To validate the suggested approach, a numerical example is presented. © 2019 Applied Computational Electromagnetics Society (ACES). All rights reserved.
引用
收藏
页码:209 / 210
相关论文
共 50 条
  • [21] Universal Gray Finite Elements for Heat Transfer Analysis in the Presence of Uncertainties
    Nejadpak, Ashkan
    Rao, Singiresu S.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2020, 6 (03):
  • [22] On the accuracy of high-order finite elements in curvilinear coordinates
    Thomas, SJ
    Cyr, AS
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 822 - 828
  • [23] Hierarchical Meshing for the Adaptive Finite Elements
    Murotani, K.
    Yagawa, G.
    ECCOMAS MULTIDISCIPLINARY JUBILEE SYMPOSIUM: NEW COMPUTATIONAL CHALLENGES IN MATERIALS, STRUCTURES AND FLUIDS, 2009, 14 : 291 - 305
  • [24] Hierarchical Bases for Polygonal Finite Elements
    Mukherjee, Tapabrata
    Webb, Jon P.
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [25] In-plane vibration analysis of plates in curvilinear domains by a differential quadrature hierarchical finite element method
    Liu, Cuiyun
    Liu, Bo
    Xing, Yufeng
    Reddy, J. N.
    Neves, A. M. A.
    Ferreira, A. J. M.
    MECCANICA, 2017, 52 (4-5) : 1017 - 1033
  • [26] In-plane vibration analysis of plates in curvilinear domains by a differential quadrature hierarchical finite element method
    Cuiyun Liu
    Bo Liu
    Yufeng Xing
    J. N. Reddy
    A. M. A. Neves
    A. J. M. Ferreira
    Meccanica, 2017, 52 : 1017 - 1033
  • [27] Equivalence between the spectral and the finite elements matrices
    Ribot, M
    Schatzman, M
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2110 - 2112
  • [29] The Definition of Finite Sequences and Matrices of Probability, and Addition of Matrices of Real Elements
    Zhang, Bo
    Nakamura, Yatsuka
    FORMALIZED MATHEMATICS, 2006, 14 (03): : 101 - 108
  • [30] Formulation of 3D finite elements using curvilinear coordinates
    Cinefra, Maria
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (06) : 879 - 888