Efficient computation of the minimum of shape quality measures on curvilinear finite elements

被引:3
|
作者
Johnen, A. [1 ,2 ]
Geuzaine, C. [1 ]
Toulorge, T. [3 ]
Remacle, J. -F. [2 ]
机构
[1] Univ Liege, Dept Elect Engn & Comp Sci, Grande Traverse 10, B-4000 Liege, Belgium
[2] Catholic Univ Louvain, Inst Mech Mat & Civil Engn iMMC, Ave Georges Lemaitre 4, B-1348 Louvain La Neuve, Belgium
[3] Cemef Mines ParisTech, Rue Claude Daunesse 1, F-06904 Sophia Antipolis, France
基金
欧盟地平线“2020”;
关键词
Finite element method; Finite element mesh; Quality of curved elements; Bezier basis; HEXAHEDRAL MESH GENERATION; P-VERSION; GEOMETRICAL VALIDITY; JACOBIAN MATRIX; INITIAL MESHES; CURVED MESHES; FRAMEWORK; DOMAINS; DECOMPOSITION; OPTIMIZATION;
D O I
10.1016/j.cad.2018.03.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a method for computing robust shape quality measures defined for finite elements of any order and any type, including curved pyramids. The measures are heuristically defined as the minimum of the pointwise quality of curved elements. Three pointwise qualities are considered: the ICN that is related to the conditioning of the stiffness matrix for straight-sided simplicial elements, the scaled Jacobian that is defined for quadrangles and hexahedra, and a new shape quality that is defined for triangles and tetrahedra. The computation of the minimum of the pointwise qualities is based on previous work presented by Johnen et al. (2013) and Johnen and Geuzaine (2015) and is very efficient. The key feature is to expand polynomial quantities into Bezier bases which allow to compute sharp bounds on the minimum of the pointwise quality measures. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [1] Efficient computation of the minimum of shape quality measures on curvilinear finite elements
    Johnen, A.
    Geuzaine, C.
    Toulorge, T.
    Remacle, J. -F.
    25TH INTERNATIONAL MESHING ROUNDTABLE, 2016, 163 : 328 - 339
  • [2] Analytical shape sensitivity computation using hybrid finite elements
    Bakshi, P
    Pandey, PC
    COMPUTERS & STRUCTURES, 1999, 70 (03) : 281 - 297
  • [3] TREFFTZ FINITE ELEMENTS ON CURVILINEAR POLYGONS
    Anand, Akash
    Ovall, Jeffrey S.
    Reynolds, Samuel E.
    Weisser, Steffen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A1289 - A1316
  • [4] Curvilinear finite elements for Lagrangian hydrodynamics
    Dobrev, V. A.
    Ellis, T. E.
    Kolev, Tz V.
    Rieben, R. N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) : 1295 - 1310
  • [5] Geometrical validity of curvilinear finite elements
    Johnen, A.
    Remacle, J. -F.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 359 - 372
  • [6] Ritz finite elements for curvilinear particles
    Heyliger, Paul R.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (05): : 335 - 345
  • [7] CURVILINEAR AND HIGHER-ORDER EDGE FINITE-ELEMENTS IN ELECTROMAGNETIC-FIELD COMPUTATION
    WANG, JS
    IDA, N
    IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (02) : 1491 - 1494
  • [8] Exact and efficient interpolation using finite elements shape functions
    Silva, Gustavo H. C.
    Le Riche, Rodolphe
    Molimard, Jerome
    Vautrin, Alain
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2009, 18 (3-4): : 307 - 331
  • [9] Geometrical validity of curvilinear pyramidal finite elements
    Johnen, A.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 124 - 129
  • [10] CURVILINEAR VECTOR FINITE DIFFERENCE APPROACH TO THE COMPUTATION OF WAVEGUIDE MODES
    Fanti, A.
    Mazzarella, G.
    Montisci, G.
    ADVANCED ELECTROMAGNETICS, 2012, 1 (01) : 29 - 37