Ritz finite elements for curvilinear particles

被引:3
|
作者
Heyliger, Paul R. [1 ]
机构
[1] Colorado State Univ, Dept Civil Engn, Ft Collins, CO 80523 USA
来源
关键词
particle mechanics; finite element; Ritz method;
D O I
10.1002/cnm.813
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A general finite element is presented for the representation of fields in curvilinear particles in two and three dimensions. The formulation of this element shares many similarities with usual finite element approximations, but differs in that nodal points are defined in part by contact points with other particles. Power series in the geometric coordinates are used as the starting basis functions, but are recast in terms of the field variables within the particle interior and the points of contact with other elements. There is no discretization error and the elements of the finite element matrices can all be evaluated in closed form. This approach is applicable to shapes in two and three dimensions, including discs, ellipses, spheres, spheroids, and potatoes. Examples are included for two-dimensional applications of steady-state heat transfer and elastostatics. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:335 / 345
页数:11
相关论文
共 50 条
  • [1] TREFFTZ FINITE ELEMENTS ON CURVILINEAR POLYGONS
    Anand, Akash
    Ovall, Jeffrey S.
    Reynolds, Samuel E.
    Weisser, Steffen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A1289 - A1316
  • [2] Curvilinear finite elements for Lagrangian hydrodynamics
    Dobrev, V. A.
    Ellis, T. E.
    Kolev, Tz V.
    Rieben, R. N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) : 1295 - 1310
  • [3] Geometrical validity of curvilinear finite elements
    Johnen, A.
    Remacle, J. -F.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 359 - 372
  • [4] Geometrical validity of curvilinear pyramidal finite elements
    Johnen, A.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 124 - 129
  • [5] Simple grid generator for finite elements with curvilinear contours
    Rieg, Frank
    Werkstatt und Betrieb, 1988, 121 (09): : 761 - 766
  • [6] Hierarchical Universal Matrices for Sensitivity Analysis by Curvilinear Finite Elements
    Toth, Laszlo Levente
    Dyczij-Edlinger, Romanus
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [7] On the accuracy of high-order finite elements in curvilinear coordinates
    Thomas, SJ
    Cyr, AS
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 822 - 828
  • [8] Hierarchical Universal Matrices for Sensitivity Analysis by Curvilinear Finite Elements
    Toth, Laszlo Levente
    Dyczij-Edlinger, Romanus
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2019, 34 (02): : 206 - 210
  • [9] Hierarchical universal matrices for sensitivity analysis by curvilinear finite elements
    Tóth, László Levente
    Dyczij-Edlinger, Romanus
    Applied Computational Electromagnetics Society Journal, 2019, 34 (02): : 209 - 210
  • [10] Deep Ritz- Finite element methods: Neural network methods trained with finite elements
    Grekas, Georgios
    Makridakis, Charalambos G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 437