Hierarchical universal matrices for sensitivity analysis by curvilinear finite elements

被引:0
|
作者
Tóth, László Levente [1 ]
Dyczij-Edlinger, Romanus [1 ]
机构
[1] Saarland University, Saarbrücken,D-66123, Germany
关键词
Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
A new method for calculating the geometric sensitivities of curvilinear finite elements is presented. Approximating the relevant metric tensors by hierarchical orthogonal polynomials enables the sensitivity matrices to be integrated analytically. The resulting numerical method is based on pre-calculated universal matrices and achieves significant savings in computer runtime over conventional techniques based on numerical integration. Moreover, there exists a representation limit for the geometry, i.e., the degree of basis functions fully determines a critical order of the geometry expansion, beyond which the derivatives of the finite-element matrices will remain constant. To validate the suggested approach, a numerical example is presented. © 2019 Applied Computational Electromagnetics Society (ACES). All rights reserved.
引用
收藏
页码:209 / 210
相关论文
共 50 条
  • [1] Hierarchical Universal Matrices for Sensitivity Analysis by Curvilinear Finite Elements
    Toth, Laszlo Levente
    Dyczij-Edlinger, Romanus
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [2] Hierarchical Universal Matrices for Sensitivity Analysis by Curvilinear Finite Elements
    Toth, Laszlo Levente
    Dyczij-Edlinger, Romanus
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2019, 34 (02): : 206 - 210
  • [3] Hierarchical Universal Matrices for Curvilinear Tetrahedral H(curl) Finite Elements With Inhomogeneous Material Properties
    Toth, Laszlo Levente
    Amor-Martin, Adrian
    Dyczij-Edlinger, Romanus
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (01) : 89 - 99
  • [4] Hierarchical universal matrices for triangular finite elements with varying material properties and curved boundaries
    Villeneuve, D
    Webb, JP
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 44 (02) : 215 - 228
  • [5] FAST ELECTROMAGNETIC SIMULATION ALGORITHM BASED ON HIERARCHICAL AND CURVILINEAR FINITE ELEMENTS
    Ping, X. W.
    Zhou, X. Y.
    Yu, W. M.
    Cui, T. J.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2011, 53 (02) : 324 - 331
  • [6] Curvilinear vector finite elements using a set of hierarchical basis functions
    Swartz, Julian P.
    Davidson, David Bruce
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (02) : 440 - 446
  • [7] Numerical evaluation of hierarchical vector finite elements on curvilinear domains in 2-D
    Marais, N
    Davidson, DB
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (02) : 734 - 738
  • [8] TREFFTZ FINITE ELEMENTS ON CURVILINEAR POLYGONS
    Anand, Akash
    Ovall, Jeffrey S.
    Reynolds, Samuel E.
    Weisser, Steffen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A1289 - A1316
  • [9] Curvilinear finite elements for Lagrangian hydrodynamics
    Dobrev, V. A.
    Ellis, T. E.
    Kolev, Tz V.
    Rieben, R. N.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) : 1295 - 1310
  • [10] Geometrical validity of curvilinear finite elements
    Johnen, A.
    Remacle, J. -F.
    Geuzaine, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 233 : 359 - 372