Physics-Informed Neural Networks for Magnetostatic Problems on Axisymmetric Transformer Geometries

被引:0
|
作者
Brendel, Philipp [1 ]
Medvedev, Vlad [1 ]
Rosskopf, Andreas [1 ]
机构
[1] Fraunhofer Institute for Integrated Systems and Device Technology Iisb, Erlangen,91058, Germany
关键词
Electric potential - Geometry - Magnetic domains - Magnetostatics - Power electronics;
D O I
10.1109/JESTIE.2023.3346798
中图分类号
学科分类号
摘要
引用
收藏
页码:700 / 709
相关论文
共 50 条
  • [31] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    [J]. Advanced Photonics, 2022, (06) : 48 - 59
  • [32] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Munoz-Matute, Judit
    Pardo, David
    Paszynski, Maciej
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [33] Robust Variational Physics-Informed Neural Networks
    Rojas, Sergio
    Maczuga, Pawel
    Muñoz-Matute, Judit
    Pardo, David
    Paszyński, Maciej
    [J]. Computer Methods in Applied Mechanics and Engineering, 2024, 425
  • [34] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    [J]. PHYSICS OF FLUIDS, 2024, 36 (07)
  • [35] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    [J]. PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [36] Physics-informed neural networks for modelling power transformer's dynamic thermal behaviour
    Bragone, Federica
    Morozovska, Kateryna
    Hilber, Patrik
    Laneryd, Tor
    Luvisotto, Michele
    [J]. Electric Power Systems Research, 2022, 211
  • [37] Physics-informed neural networks for modelling power transformer?s dynamic thermal behaviour
    Bragone, Federica
    Morozovska, Kateryna
    Hilber, Patrik
    Laneryd, Tor
    Luvisotto, Michele
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
  • [38] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    [J]. ACTA NUMERICA, 2024, 33 : 633 - 713
  • [39] Surrogate modeling for Bayesian inverse problems based on physics-informed neural networks
    Li, Yongchao
    Wang, Yanyan
    Yan, Liang
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [40] Physics-informed neural networks for friction-involved nonsmooth dynamics problems
    Li, Zilin
    Bai, Jinshuai
    Ouyang, Huajiang
    Martelli, Saulo
    Tang, Ming
    Yang, Yang
    Wei, Hongtao
    Liu, Pan
    Wei, Ronghan
    Gu, Yuantong
    [J]. NONLINEAR DYNAMICS, 2024, 112 (09) : 7159 - 7183