Physics-Informed Neural Networks for Magnetostatic Problems on Axisymmetric Transformer Geometries

被引:0
|
作者
Brendel, Philipp [1 ]
Medvedev, Vlad [1 ]
Rosskopf, Andreas [1 ]
机构
[1] Fraunhofer Institute for Integrated Systems and Device Technology Iisb, Erlangen,91058, Germany
关键词
Electric potential - Geometry - Magnetic domains - Magnetostatics - Power electronics;
D O I
10.1109/JESTIE.2023.3346798
中图分类号
学科分类号
摘要
引用
收藏
页码:700 / 709
相关论文
共 50 条
  • [41] Application of physics-informed neural networks to inverse problems in unsaturated groundwater flow
    Depina, Ivan
    Jain, Saket
    Valsson, Sigurdur Mar
    Gotovac, Hrvoje
    [J]. GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2022, 16 (01) : 21 - 36
  • [42] On Physics-Informed Neural Networks training for coupled hydro-poromechanical problems
    Millevoi, Caterina
    Spiezia, Nicolo
    Ferronato, Massimiliano
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 516
  • [43] Spectrally adapted physics-informed neural networks for solving unbounded domain problems
    Xia, Mingtao
    Boettcher, Lucas
    Chou, Tom
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [44] Physics-informed neural networks: A deep learning framework for solving the vibrational problems
    Wang, Xusheng
    Zhang, Liang
    [J]. ADVANCES IN NANO RESEARCH, 2021, 11 (05) : 495 - 519
  • [45] Ensemble of physics-informed neural networks for solving plane elasticity problems with examples
    Mouratidou, Aliki D.
    Drosopoulos, Georgios A.
    Stavroulakis, Georgios E.
    [J]. ACTA MECHANICA, 2024,
  • [46] Physics-informed neural networks for friction-involved nonsmooth dynamics problems
    Zilin Li
    Jinshuai Bai
    Huajiang Ouyang
    Saulo Martelli
    Ming Tang
    Yang Yang
    Hongtao Wei
    Pan Liu
    Ronghan Wei
    Yuantong Gu
    [J]. Nonlinear Dynamics, 2024, 112 : 7159 - 7183
  • [48] Physics-informed neural networks for inverse problems in nano-optics and metamaterials
    Chen, Yuyao
    Lu, Lu
    Karniadakis, George Em
    Dal Negro, Luca
    [J]. OPTICS EXPRESS, 2020, 28 (08) : 11618 - 11633
  • [49] Transfer learning-based physics-informed neural networks for magnetostatic field simulation with domain variations
    Lippert, Jonathan Rainer
    von Tresckow, Moritz
    De Gersem, Herbert
    Loukrezis, Dimitrios
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (04)
  • [50] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    [J]. 6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30