Hyperspectral reflectance for classification of medicinal Cannabis varieties using machine learning algorithms

被引:0
|
作者
Henao-Cespedes, Vladimir [1 ]
Cardona-Morales, Oscar [2 ]
Andres Vargas-Alzate, Jolian [3 ]
Ricardo Leon-Zuleta, Julian [3 ]
Mackniven Guzman-Buendia, Eddy [4 ]
Alberto Garces-Gomez, Yeison [1 ]
机构
[1] Univ Catolica Maniz, Fac Engn & Architecture, Manizales, Colombia
[2] Univ Autonoma Maniz, Fac Engn, Antigua Estn Ferrocarril, Manizales, Colombia
[3] Cubikan Grp, Res Div, Manizales, Colombia
[4] Univ Nacl Colombia, Fac Exact & Nat Sci, Manizales, Colombia
关键词
machine learning; Cannabis; classification; spectral signature; spectroscopy; EPILEPSY;
D O I
10.1117/1.OE.63.6.064103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By classifying crops using machine learning approaches, it is possible to determine if the spectral signatures of several variations of the same species differ from one another. This allows for the correlation of the spectral signatures with key properties of the finished product. The final cannabinoid content of a certain species is a crucial quality attribute that might raise the crop's value in the case of Cannabis growing. In contrast to conventional cutting and laboratory analysis approaches, the classification of Cannabis varietals from spectral signatures is proposed as a nondestructive process. The findings demonstrate that a random forest classification algorithm optimized on hyparameters can classify four types of Cannabis grown in Colombia with a multiclass accuracy of 95.6% using the spectral signature. These findings will make it possible to determine whether the spectral signature is related to the cannabinoid content of the various kinds, which is crucial for medical purposes. (c) 2024 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms
    Wei, Yanlin
    Li, Xiaofeng
    Pan, Xin
    Li, Lei
    SENSORS, 2020, 20 (23) : 1 - 12
  • [2] Classification of Similarly Colored Medicinal Berries using Hyperspectral Images and Machine Learning Models
    Kim, Min Chae
    Yoon, Hyo In
    Lee, Hyein
    Park, So Jin
    Yang, Jung Seok
    Jung, Dae-Hyun
    Park, Soo Hyun
    HORTICULTURAL SCIENCE & TECHNOLOGY, 2024, 42 (03): : 249 - 263
  • [3] Classification of Citrus Leaf Diseases Using Hyperspectral Reflectance and Fluorescence Imaging and Machine Learning Techniques
    Min, Hyun Jung
    Qin, Jianwei
    Yadav, Pappu Kumar
    Frederick, Quentin
    Burks, Thomas
    Dewdney, Megan
    Baek, Insuck
    Kim, Moon
    HORTICULTURAE, 2024, 10 (11)
  • [4] LAPLACIAN SUPPORT VECTOR MACHINE FOR HYPERSPECTRAL IMAGE CLASSIFICATION BY USING MANIFOLD LEARNING ALGORITHMS
    Wang, Xiaopan
    Ma, Li
    Liu, Fujiang
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1027 - 1030
  • [5] Classification of large-sized hyperspectral imagery using fast machine learning algorithms
    Xia, Junshi
    Yokoya, Naoto
    Iwasaki, Akira
    JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
  • [6] Grapevine Varieties Classification Using Machine Learning
    Marques, Pedro
    Padua, Luis
    Adao, Telmo
    Hruska, Jonas
    Sousa, Jose
    Peres, Emanuel
    Sousa, Joaquim J.
    Morais, Raul
    Sousa, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 186 - 199
  • [7] Crop Type Classification by DESIS Hyperspectral Imagery and Machine Learning Algorithms
    Farmonov, Nizom
    Amankulova, Khilola
    Szatmari, Jozsef
    Sharifi, Alireza
    Abbasi-Moghadam, Dariush
    Nejad, Seyed Mahdi Mirhoseini
    Mucsi, Laszlo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1576 - 1588
  • [8] Identification of Rice Varieties Using Machine Learning Algorithms
    Cinar, Ilkay
    Koklu, Murat
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2022, 28 (02): : 307 - 325
  • [9] Tree species classification using machine learning algorithms with OHS-2 hyperspectral image
    Wang, Nan
    Wang, Guisheng
    Scientia Forestalis/Forest Sciences, 2023, 51
  • [10] Tree species classification using machine learning algorithms with OHS-2 hyperspectral image
    Wang, Nan
    Wang, Guisheng
    SCIENTIA FORESTALIS, 2023, 51