Formal methods enhance deep learning for smart cities: Challenges and future directions

被引:0
|
作者
Ma, Meiyi [1 ]
机构
[1] Department of Computer Science, Vanderbilt University, United States
来源
XRDS: Crossroads | 2022年 / 28卷 / 03期
关键词
Deep learning - Smart city;
D O I
10.1145/3522694
中图分类号
学科分类号
摘要
Rigorous approaches based on formal methods have the potential to fundamentally improve many aspects of deep learning. This article discusses the challenges and future directions of formal methods enhanced deep learning for smart cities. © 2022 ACM.
引用
收藏
页码:42 / 46
相关论文
共 50 条
  • [41] Video Fire Detection Methods Based on Deep Learning: Datasets, Methods, and Future Directions
    Jin, Chengtuo
    Wang, Tao
    Alhusaini, Naji
    Zhao, Shenghui
    Liu, Huilin
    Xu, Kun
    Zhang, Jin
    Chen, Tao
    FIRE-SWITZERLAND, 2023, 6 (08):
  • [42] Intelligent and Energy-Efficient Data Prioritization in Green Smart Cities: Current Challenges and Future Directions
    Muhammad, Khan
    Lloret, Jaime
    Baik, Sung Wook
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (02) : 60 - 65
  • [43] Object tracking sensor networks in smart cities: Taxonomy, architecture, applications, research challenges and future directions
    Adam, Mohammed Sani
    Anisi, Mohammad Hossein
    Ali, Ihsan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 107 : 909 - 923
  • [44] Formal Methods in Requirements Engineering: Survey and Future Directions
    Lorch, Robert
    Meng, Baoluo
    Siu, Kit
    Moitra, Abha
    Durling, Michael
    Paul, Saswata
    Varanasi, Sarat Chandra
    McMillan, Craig
    PROCEEDINGS OF THE 2024 IEEE/ACM 12TH INTERNATIONAL CONFERENCE ON FORMAL METHODS IN SOFTWARE ENGINEERING, FORMALISE 2024, 2024, : 88 - 99
  • [45] Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions
    Ramu, Swarna Priya
    Boopalan, Parimala
    Pham, Quoc-Viet
    Maddikunta, Praveen Kumar Reddy
    Huynh-The, Thien
    Alazab, Mamoun
    Nguyen, Thanh Thi
    Gadekallu, Thippa Reddy
    SUSTAINABLE CITIES AND SOCIETY, 2022, 79
  • [46] Federated Learning for 6G Communications: Challenges, Methods, and Future Directions
    Liu, Yi
    Yuan, Xingliang
    Xiong, Zehui
    Kang, Jiawen
    Wang, Xiaofei
    Niyato, Dusit
    CHINA COMMUNICATIONS, 2020, 17 (09) : 105 - 118
  • [47] Federated Learning for 6G Communications: Challenges, Methods, and Future Directions
    Yi Liu
    Xingliang Yuan
    Zehui Xiong
    Jiawen Kang
    Xiaofei Wang
    Dusit Niyato
    China Communications, 2020, 17 (09) : 105 - 118
  • [48] Deep Learning-Based Dermatological Condition Detection: A Systematic Review With Recent Methods, Datasets, Challenges, and Future Directions
    Noronha, Stephanie S.
    Mehta, Mayuri A.
    Garg, Dweepna
    Kotecha, Ketan
    Abraham, Ajith
    IEEE ACCESS, 2023, 11 : 140348 - 140381
  • [49] Deep learning application in smart cities: recent development, taxonomy, challenges and research prospects
    Amina N. Muhammad
    Ali M. Aseere
    Haruna Chiroma
    Habib Shah
    Abdulsalam Y. Gital
    Ibrahim Abaker Targio Hashem
    Neural Computing and Applications, 2021, 33 : 2973 - 3009
  • [50] Smart cities survey: Technologies, application domains and challenges for the cities of the future
    Sanchez-Corcuera, Ruben
    Nunez-Marcos, Adrian
    Sesma-Solance, Jesus
    Bilbao-Jayo, Aritz
    Mulero, Ruben
    Zulaika, Unai
    Azkune, Gorka
    Almeida, Aitor
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2019, 15 (06)