Formal methods enhance deep learning for smart cities: Challenges and future directions

被引:0
|
作者
Ma, Meiyi [1 ]
机构
[1] Department of Computer Science, Vanderbilt University, United States
来源
XRDS: Crossroads | 2022年 / 28卷 / 03期
关键词
Deep learning - Smart city;
D O I
10.1145/3522694
中图分类号
学科分类号
摘要
Rigorous approaches based on formal methods have the potential to fundamentally improve many aspects of deep learning. This article discusses the challenges and future directions of formal methods enhanced deep learning for smart cities. © 2022 ACM.
引用
收藏
页码:42 / 46
相关论文
共 50 条
  • [31] Between the Megalopolis and the Deep Blue Sky: Challenges of Transport with UAVs in Future Smart Cities
    Mualla, Yazan
    Najjar, Amro
    Galland, Stephane
    Nicolle, Christophe
    Tchappi, Igor Haman
    Yasar, Ansar-Ul-Haque
    Framling, Kary
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1649 - 1653
  • [32] Ontologies and Machine Learning Models to Enhance Health Informatics: A Survey, Challenges and Future Directions
    Department of Computer Science, Mohamed El Bachir El Ibrahimi University, Bordj Bou Arreridj, Algeria
    不详
    不详
    IAENG Int. J. Appl. Math., 2025, 55 (03): : 475 - 499
  • [33] Evaluating Social Impact of Smart City Technologies and Services: Methods, Challenges, Future Directions
    Hodson, Elise
    Vainio, Teija
    Sayun, Michel Nader
    Tomitsch, Martin
    Jones, Ana
    Jalonen, Meri
    Borutecene, Ahmet
    Hasan, Md Tanvir
    Paraschivoiu, Irina
    Wolff, Annika
    Yavo-Ayalon, Sharon
    Yli-Kauhaluoma, Sari
    Young, Gareth W.
    MULTIMODAL TECHNOLOGIES AND INTERACTION, 2023, 7 (03)
  • [34] Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions
    Wang, Fujun
    Cao, Zining
    Tan, Lixing
    Zong, Hui
    IEEE ACCESS, 2020, 8 : 108561 - 108578
  • [35] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Laith Alzubaidi
    Jinglan Zhang
    Amjad J. Humaidi
    Ayad Al-Dujaili
    Ye Duan
    Omran Al-Shamma
    J. Santamaría
    Mohammed A. Fadhel
    Muthana Al-Amidie
    Laith Farhan
    Journal of Big Data, 8
  • [36] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [37] Breast cancer detection using deep learning techniques: challenges and future directions
    Muhammad Saad Shahid
    Azhar Imran
    Multimedia Tools and Applications, 2025, 84 (6) : 3257 - 3304
  • [38] Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Hussain, Muzammil
    Liew, Soung-Yue
    Andonovic, Ivan
    Khan, Muhammad Adnan
    SENSORS, 2022, 22 (18)
  • [39] Potential, challenges and future directions for deep learning in prognostics and health management applications
    Fink, Olga
    Wang, Qin
    Svensen, Markus
    Dersin, Pierre
    Lee, Wan-Jui
    Ducoffe, Melanie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 92
  • [40] Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions
    Bharati, Subrato
    Podder, Prajoy
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022