Formal methods enhance deep learning for smart cities: Challenges and future directions

被引:0
|
作者
Ma, Meiyi [1 ]
机构
[1] Department of Computer Science, Vanderbilt University, United States
来源
XRDS: Crossroads | 2022年 / 28卷 / 03期
关键词
Deep learning - Smart city;
D O I
10.1145/3522694
中图分类号
学科分类号
摘要
Rigorous approaches based on formal methods have the potential to fundamentally improve many aspects of deep learning. This article discusses the challenges and future directions of formal methods enhanced deep learning for smart cities. © 2022 ACM.
引用
收藏
页码:42 / 46
相关论文
共 50 条
  • [21] Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions
    Muhammad, Khan
    Ullah, Amin
    Lloret, Jaime
    Del Ser, Javier
    de Albuquerque, Victor Hugo C.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4316 - 4336
  • [22] Multimodal Emotion Recognition with Deep Learning: Advancements, challenges, and future directions
    Geetha, A., V
    Mala, T.
    Priyanka, D.
    Uma, E.
    INFORMATION FUSION, 2024, 105
  • [23] Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions
    Do, Nguyet Quang
    Selamat, Ali
    Krejcar, Ondrej
    Herrera-Viedma, Enrique
    Fujita, Hamido
    IEEE ACCESS, 2022, 10 : 36429 - 36463
  • [24] Analytics of location-based big data for smart cities: Opportunities, challenges, and future directions
    Huang, Haosheng
    Yao, Xiaobai Angela
    Krisp, Jukka M.
    Jiang, Bin
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2021, 90 (90)
  • [25] Smart living and robotics: challenges and future directions
    Hsieh, Sheng-Jen
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2011, 38 (06) : 559 - 559
  • [26] Smart Manufacturing for Smart Cities-Overview, Insights, and Future Directions
    Suvarna, Manu
    Buth, Lennart
    Hejny, Johannes
    Mennenga, Mark
    Li, Jie
    Ng, Yen Ting
    Herrmann, Christoph
    Wang, Xiaonan
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (10)
  • [27] Deep learning based authentication schemes for smart devices in different modalities: progress, challenges, performance, datasets and future directions
    Shende, Shailendra W.
    Tembhurne, Jitendra V.
    Ansari, Nishat Afshan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71451 - 71493
  • [28] Analyzing the Challenges for Future Smart and Sustainable Cities
    Paes, Vitor de Castro
    Pessoa, Clinton Hudson Moreira
    Pagliusi, Rodrigo Pereira
    Barbosa, Carlos Eduardo
    Argolo, Matheus
    de Lima, Yuri Oliveira
    Salazar, Herbert
    Lyra, Alan
    de Souza, Jano Moreira
    SUSTAINABILITY, 2023, 15 (10)
  • [29] A Survey of Deep Learning for Detecting miRNA- Disease Associations: Databases, Computational Methods, Challenges, and Future Directions
    Sheng, Nan
    Xie, Xuping
    Wang, Yan
    Huang, Lan
    Zhang, Shuangquan
    Gao, Ling
    Wang, Hao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (03) : 328 - 347
  • [30] Going Deep in Medical Image Analysis: Concepts, Methods, Challenges, and Future Directions
    Altaf, Fouzia
    Islam, Syed M. S.
    Akhtar, Naveed
    Janjua, Naeem Khalid
    IEEE ACCESS, 2019, 7 : 99540 - 99572