Convergence of the ginzburg-landau approximation for the ericksen-leslie system

被引:0
|
作者
Feng, Zhewen [1 ]
Hong, Min-Chun [1 ]
Mei, Yu [1 ,2 ]
机构
[1] Department of Mathematics, University of Queensland, Brisbane,QLD,4072, Australia
[2] Gran Sasso Science Institute, L'Aquila (AQ),67100, Italy
来源
SIAM Journal on Mathematical Analysis | 2020年 / 52卷 / 01期
基金
澳大利亚研究理事会;
关键词
Approximation theory;
D O I
暂无
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
We establish the local well-posedness of the general Ericksen-Leslie system in liquid crystals with the initial velocity and director field in H1 × H2 b . In particular, we prove that the solutions of the Ginzburg-Landau approximation system converge smoothly to the solution of the Ericksen-Leslie system for any t ∈(0, T&Z.ast; ) with a maximal existence time T∗ of the Ericksen-Leslie system. © by SIAM. Unauthorized reproduction of this article is prohibited.
引用
收藏
页码:481 / 523
相关论文
共 50 条
  • [41] GLOBAL WEAK SOLUTIONS TO THE STOCHASTIC ERICKSEN-LESLIE SYSTEM IN DIMENSION TWO
    Du, Hengrong
    Wang, Changyou
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (05) : 2175 - 2197
  • [42] WELL-POSEDNESS OF THE FULL ERICKSEN-LESLIE SYSTEM IN BOUNDED DOMAINS
    Wang, Huaijie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (10): : 3980 - 4001
  • [43] Local well-posedness to inhomogeneous Ericksen-Leslie system with general Leslie stress tensor
    Gong, Huajun
    Li, Jinkai
    Xu, Chen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [44] Wavelet analogue of the Ginzburg-Landau energy and its Γ-convergence
    Dobrosotskaya, J. A.
    Bertozzi, A. L.
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (04) : 497 - 525
  • [45] Γ-convergence of the Ginzburg-Landau functional with tangential boundary conditions
    Alama, Stan
    Bronsard, Lia
    Colinet, Andrew
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (11)
  • [46] Γ-convergence of ashearlet-based Ginzburg-Landau energy
    Petersen, Philipp Christian
    Suli, Endre
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (03) : 727 - 770
  • [47] Convergence towards attractors for a degenerate Ginzburg-Landau equation
    N. I. Karachalios
    N. B. Zographopoulos
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 11 - 30
  • [48] Global strong solutions of the 2D simplified Ericksen-Leslie system
    Gong, Huajun
    Huang, Jinrui
    Liu, Lanming
    Liu, Xiangao
    NONLINEARITY, 2015, 28 (10) : 3677 - 3694
  • [49] Global strong solutions to incompressible Ericksen-Leslie system in R3
    Ma, Wenya
    Gong, Huajun
    Li, Jinkai
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 109 : 230 - 235
  • [50] Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ→+∞
    Bonnet, A
    Chapman, SJ
    Monneau, R
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (06) : 1374 - 1395