Convergence of the ginzburg-landau approximation for the ericksen-leslie system

被引:0
|
作者
Feng, Zhewen [1 ]
Hong, Min-Chun [1 ]
Mei, Yu [1 ,2 ]
机构
[1] Department of Mathematics, University of Queensland, Brisbane,QLD,4072, Australia
[2] Gran Sasso Science Institute, L'Aquila (AQ),67100, Italy
来源
SIAM Journal on Mathematical Analysis | 2020年 / 52卷 / 01期
基金
澳大利亚研究理事会;
关键词
Approximation theory;
D O I
暂无
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
We establish the local well-posedness of the general Ericksen-Leslie system in liquid crystals with the initial velocity and director field in H1 × H2 b . In particular, we prove that the solutions of the Ginzburg-Landau approximation system converge smoothly to the solution of the Ericksen-Leslie system for any t ∈(0, T&Z.ast; ) with a maximal existence time T∗ of the Ericksen-Leslie system. © by SIAM. Unauthorized reproduction of this article is prohibited.
引用
收藏
页码:481 / 523
相关论文
共 50 条
  • [31] Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System
    Chechkin, Gregory A.
    Ratiu, Tudor S.
    Romanov, Maxim S.
    Samokhin, Vyacheslav N.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (03) : 571 - 589
  • [32] ON DISSIPATIVE SOLUTIONS TO A SIMPLIFIED HYPERBOLIC ERICKSEN-LESLIE SYSTEM OF LIQUID CRYSTALS
    Cheng, Feng
    Jiang, Ning
    Luo, Yi-Long
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (01) : 175 - 192
  • [33] ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY
    DU, Q
    GUNZBURGER, MD
    PETERSON, JS
    SIAM REVIEW, 1992, 34 (01) : 54 - 81
  • [34] ERROR-ESTIMATES FOR THE GINZBURG-LANDAU APPROXIMATION
    SCHNEIDER, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (03): : 433 - 457
  • [35] Concentration-cancellation in the Ericksen-Leslie model
    Kortum, Joshua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (06)
  • [36] EXISTENCE OF REGULAR SOLUTIONS TO AN ERICKSEN-LESLIE MODEL OF THE LIQUID CRYSTAL SYSTEM
    Dai, Mimi
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) : 1711 - 1740
  • [37] Global solvability of the inhomogeneous Ericksen-Leslie system with only bounded density
    De Anna, Francesco
    ANALYSIS AND APPLICATIONS, 2017, 15 (06) : 863 - 913
  • [38] A TIME-SPLITTING FINITE-ELEMENT STABLE APPROXIMATION FOR THE ERICKSEN-LESLIE EQUATIONS
    Cabrales, R. C.
    Guillen-Gonzalez, F.
    Gutierrez-Santacreu, J. V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : B261 - B282
  • [39] GLOBAL WELL-POSEDNESS FOR ERICKSEN-LESLIE SYSTEM WITH ZERO VISCOSITY
    Zhou, Jianfeng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) : 2185 - 2197
  • [40] On unique solvability of the full three-dimensional Ericksen-Leslie system
    Chechkin, Gregory A.
    Ratiu, Tudor S.
    Romanov, Maxim S.
    Samokhin, Vyacheslav N.
    COMPTES RENDUS MECANIQUE, 2016, 344 (07): : 459 - 463