Convergence of the ginzburg-landau approximation for the ericksen-leslie system

被引:0
|
作者
Feng, Zhewen [1 ]
Hong, Min-Chun [1 ]
Mei, Yu [1 ,2 ]
机构
[1] Department of Mathematics, University of Queensland, Brisbane,QLD,4072, Australia
[2] Gran Sasso Science Institute, L'Aquila (AQ),67100, Italy
来源
SIAM Journal on Mathematical Analysis | 2020年 / 52卷 / 01期
基金
澳大利亚研究理事会;
关键词
Approximation theory;
D O I
暂无
中图分类号
O24 [计算数学];
学科分类号
070102 ;
摘要
We establish the local well-posedness of the general Ericksen-Leslie system in liquid crystals with the initial velocity and director field in H1 × H2 b . In particular, we prove that the solutions of the Ginzburg-Landau approximation system converge smoothly to the solution of the Ericksen-Leslie system for any t ∈(0, T&Z.ast; ) with a maximal existence time T∗ of the Ericksen-Leslie system. © by SIAM. Unauthorized reproduction of this article is prohibited.
引用
收藏
页码:481 / 523
相关论文
共 50 条
  • [21] NUMERICAL APPROXIMATION OF NEMATIC LIQUID CRYSTAL FLOWS GOVERNED BY THE ERICKSEN-LESLIE EQUATIONS
    Walkington, Noel J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03): : 523 - 540
  • [22] Large Ericksen number limit for the 2D general Ericksen-Leslie system
    Cheng, Feng
    Jiang, Ning
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 65
  • [23] Blow-up criteria of the simplified Ericksen-Leslie system
    Chen, Zhengmao
    Wu, Fan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [24] RIGOROUS DERIVATION FROM LANDAU-DE GENNES THEORY TO ERICKSEN-LESLIE THEORY
    Wang, Wei
    Zhang, Pingwen
    Zhang, Zhifei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) : 127 - 158
  • [25] Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen-Leslie Equations
    Lasarzik, Robert
    Reiter, Maximilian E. V.
    ACTA APPLICANDAE MATHEMATICAE, 2023, 184 (01)
  • [26] Convergence of Meissner minimisers of the Ginzburg-Landau energy as κ→+∞
    Bonnet, A
    Chapman, SJ
    Monneau, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (12): : 971 - 975
  • [27] Twisted Solutions to a Simplified Ericksen-Leslie Equation
    Chen, Yuan
    Kim, Soojung
    Yu, Yong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (01) : 303 - 336
  • [28] Variational convergence for functionals of Ginzburg-Landau type
    Alberti, G
    Baldo, S
    Orlandi, G
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (05) : 1411 - 1472
  • [29] Covariant gaussian approximation in Ginzburg-Landau model
    Wang, J. F.
    Li, D. P.
    Kao, H. C.
    Rosenstein, B.
    ANNALS OF PHYSICS, 2017, 380 : 228 - 254
  • [30] Global existence of solutions of the simplified Ericksen-Leslie system in dimension two
    Hong, Min-Chun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) : 15 - 36