Orbit correction on elliptical orbits: Part 2 Eccentricity 0 < e < 1

被引:0
|
作者
Eidel, Werner [1 ]
机构
[1] UniBwM, Kindergartenstraße 11, Freudenberg,97896, Germany
来源
关键词
Differential equations - Orbits;
D O I
暂无
中图分类号
学科分类号
摘要
Using the extended Hill’s equations for elliptical orbits a method of path correction for satellites is presented. In part 1 the simplified differential equations for small eccentricities were used. In those governing equations the time was the independent variable. In this part the basic equations guilty for any elliptical orbit with the true anomaly as independent variable are used. Now, this time dependent orbital element may be used as variable instead of the transfer time. For such a chosen true anomaly at encounter, the two instantaneous velocity changes for a two-impulse transfer are determined. Additional the restrictions by singularities for this parameter are outlined by formulas and it is shown how the optimal parameter of minimal Δv, which is located between two singularities, will be computed. The objective function depends on one variable only, i.e. the true anomaly. Therefore, the minimum may be numerically determined straightforward by using an optimization program or more sophisticated by applying the Newton method. The method of path correction used here may be also applied to related problems of orbit mechanics. © Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2024. Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.
引用
收藏
相关论文
共 50 条
  • [41] E2-TRANSITION RATES AND SENIORITY MIXING IN PROTON 1G9/2 ORBIT
    SCHNEIDER, WD
    GONSIOR, KH
    GUNTHER, C
    NUCLEAR PHYSICS A, 1975, 249 (01) : 103 - 110
  • [42] Spin-orbit branching in the collision-induced dissociation reaction of He(1S0)+HF(X1Σ0+)→He(1S0)+H(2S1/2)+F(2P3/2,1/2)
    Takayanagi, T
    Wada, A
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (14): : 6385 - 6393
  • [43] Initial bow imperfections e(0) for the verification of Flexural Buckling According to Eurocode 3 Part 1-1 - additional considerations
    Lindner, Joachim
    Kuhlmann, Ulrike
    Joerg, Fabian
    STEEL CONSTRUCTION-DESIGN AND RESEARCH, 2018, 11 (01): : 30 - 41
  • [44] QCD corrections to e+e- → J/ψ(ψ(2S)) + χcJ (J=0, 1, 2) at B factories
    Wang, Kai
    Ma, Yan-Qing
    Chao, Kuang-Ta
    PHYSICAL REVIEW D, 2011, 84 (03)
  • [45] An asymptotic expansion for (0)Sigma(infinity)(2n+1)e(-sigma(n+1/2)2)
    Mulholland, HP
    Fowler, RH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1928, 24 : 280 - 289
  • [46] E(1), E(2), AND E'(0) TRANSITIONS AND PRESSURE-DEPENDENCE IN ORDERED GA0.5IN0.5P
    WEI, SH
    FRANCESCHETTI, A
    ZUNGER, A
    PHYSICAL REVIEW B, 1995, 51 (19): : 13097 - 13102
  • [47] E-business and management science: Mutual impacts (part 1 of 2)
    Geoffrion, AM
    Krishnan, R
    MANAGEMENT SCIENCE, 2003, 49 (10) : 1275 - 1286
  • [48] EFFECTIVE CHARGES FOR E-2 TRANSITIONS IN THE 1-F-7/2 AND G-9/2 PROTON ORBITS
    VERVIER, J
    PHYSICS LETTERS, 1964, 13 (01): : 47 - 50
  • [49] E0-E2-M1 MULTIPOLE ADMIXTURES OF TRANSITIONS IN EVEN-EVEN NUCLEI
    LANGE, J
    KUMAR, K
    HAMILTON, JH
    REVIEWS OF MODERN PHYSICS, 1982, 54 (01) : 119 - 194
  • [50] Variation of rotational content in E(2(1)(+)) with valence nucleon pairs and correlation with B(E2)up arrow and E(0(beta)(+))
    Gupta, JB
    Kavathekar, AK
    PHYSICA SCRIPTA, 1997, 56 (06): : 574 - 579