Orbit correction on elliptical orbits: Part 2 Eccentricity 0 < e < 1

被引:0
|
作者
Eidel, Werner [1 ]
机构
[1] UniBwM, Kindergartenstraße 11, Freudenberg,97896, Germany
来源
关键词
Differential equations - Orbits;
D O I
暂无
中图分类号
学科分类号
摘要
Using the extended Hill’s equations for elliptical orbits a method of path correction for satellites is presented. In part 1 the simplified differential equations for small eccentricities were used. In those governing equations the time was the independent variable. In this part the basic equations guilty for any elliptical orbit with the true anomaly as independent variable are used. Now, this time dependent orbital element may be used as variable instead of the transfer time. For such a chosen true anomaly at encounter, the two instantaneous velocity changes for a two-impulse transfer are determined. Additional the restrictions by singularities for this parameter are outlined by formulas and it is shown how the optimal parameter of minimal Δv, which is located between two singularities, will be computed. The objective function depends on one variable only, i.e. the true anomaly. Therefore, the minimum may be numerically determined straightforward by using an optimization program or more sophisticated by applying the Newton method. The method of path correction used here may be also applied to related problems of orbit mechanics. © Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2024. Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.
引用
收藏
相关论文
共 50 条
  • [31] Out-of-plane (e, 2e) experiments on helium L=0, 1, 2 autoionizing levels
    deHarak, B. A.
    Bartschat, K.
    Martin, N. L. S.
    PHYSICAL REVIEW LETTERS, 2008, 100 (06)
  • [32] Out-of-plane (e,2e) experiments on helium L=0, 1, 2 autoionizing levels
    deHarak, B. A.
    Bartschat, K.
    Martin, N. L. S.
    XXVI INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS, 2009, 194
  • [34] Factorization and next-to-leading-order QCD correction in e+e-→J/ψ(ψ(2S))+χc0
    Zhang, Yu-Jie
    Ma, Yan-Qing
    Chao, Kuang-Ta
    PHYSICAL REVIEW D, 2008, 78 (05)
  • [35] Correction to: Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 1 and Part 2
    Yuko Kitagawa
    Takashi Uno
    Tsuneo Oyama
    Ken Kato
    Hiroyuki Kato
    Hirofumi Kawakubo
    Osamu Kawamura
    Motoyasu Kusano
    Hiroyuki Kuwano
    Hiroya Takeuchi
    Yasushi Toh
    Yuichiro Doki
    Yoshio Naomoto
    Kenji Nemoto
    Eisuke Booka
    Hisahiro Matsubara
    Tatsuya Miyazaki
    Manabu Muto
    Akio Yanagisawa
    Masahiro Yoshida
    Esophagus, 2022, 19 : 726 - 726
  • [36] Distribution of 0 and 1 in the highest level of primitivesequences over Z/(2~e) (Ⅱ)
    QI Wenfeng and ZHOU Jinjun Department of Applied Mathmatics
    ChineseScienceBulletin, 1998, (08) : 633 - 635
  • [37] EVIDENCE FOR THE PRESENCE OF E0 IN DIRECT COMPETITION WITH M1 AND E2
    GERHOLM, TR
    PETTERSSON, BG
    PHYSICAL REVIEW, 1958, 110 (05): : 1119 - 1122
  • [38] HYPERFINE SPLITTING COMPUTATION IN THE 1S(1/2)(E)2S(1/2)(MU) STATE OF THE EXOTIC (HE-4(2+)-MU-E-)0 AND (HE-3(2+)-MU-E-)0 ATOMS
    YAKHONTOV, VL
    AMUSIA, MY
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1994, 27 (16) : 3743 - 3765
  • [39] Approximating small and large amplitude periodic orbits of the oscillator x+(1+x2)x=0
    Kalmar-Nagy, Tamas
    Erneux, Thomas
    JOURNAL OF SOUND AND VIBRATION, 2008, 313 (3-5) : 806 - 811
  • [40] Isoscalar E0, E1, E2, and E3 strength in 94Mo
    Button, J.
    Lui, Y. -W.
    Youngblood, D. H.
    Chen, X.
    Bonasera, G.
    Shlomo, S.
    PHYSICAL REVIEW C, 2016, 94 (03)