Orbit correction on elliptical orbits: Part 2 Eccentricity 0 < e < 1

被引:0
|
作者
Eidel, Werner [1 ]
机构
[1] UniBwM, Kindergartenstraße 11, Freudenberg,97896, Germany
来源
关键词
Differential equations - Orbits;
D O I
暂无
中图分类号
学科分类号
摘要
Using the extended Hill’s equations for elliptical orbits a method of path correction for satellites is presented. In part 1 the simplified differential equations for small eccentricities were used. In those governing equations the time was the independent variable. In this part the basic equations guilty for any elliptical orbit with the true anomaly as independent variable are used. Now, this time dependent orbital element may be used as variable instead of the transfer time. For such a chosen true anomaly at encounter, the two instantaneous velocity changes for a two-impulse transfer are determined. Additional the restrictions by singularities for this parameter are outlined by formulas and it is shown how the optimal parameter of minimal Δv, which is located between two singularities, will be computed. The objective function depends on one variable only, i.e. the true anomaly. Therefore, the minimum may be numerically determined straightforward by using an optimization program or more sophisticated by applying the Newton method. The method of path correction used here may be also applied to related problems of orbit mechanics. © Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2024. Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.
引用
收藏
相关论文
共 50 条
  • [21] ORBIT DETERMINATION OF SPACECRAFT IN EARTH-MOON L1 AND L2 LIBRATION POINT ORBITS
    Woodard, Mark
    Cosgrove, Daniel
    Morinelli, Patrick
    Marchese, Jeffrey
    Owens, Brandon
    Folta, David
    ASTRODYNAMICS 2011, PTS I - IV, 2012, 142 : 1683 - +
  • [22] THE E3-SIGMA--A3-PI(0,0) AND E1-SIGMA--A'1-PI(0,0), (1, 1), AND (2, 2) BANDS OF CAO - MULTISTATE DEPERTURBATION OF THE E3-SIGMA-(V=O) - C3-SIGMA+(V=1) - E1-SIGMA-(V=O) SYSTEM
    BALDWIN, DP
    NORMAN, JB
    SOLTZ, RA
    SUR, A
    FIELD, RW
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1990, 139 (01) : 39 - 67
  • [23] Isoscalar E0, E1, and E2 strength in 44Ca
    Button, J.
    Lui, Y. -W.
    Youngblood, D. H.
    Chen, X.
    Bonasera, G.
    Shlomo, S.
    PHYSICAL REVIEW C, 2017, 96 (05)
  • [24] ANALYSIS OF CH2A 1A1 (1,0,0) AND (0,0,1) CORIOLIS-COUPLED STATES, A 1A1-X 3B1 SPIN ORBIT COUPLING, AND THE EQUILIBRIUM STRUCTURE OF CH2A 1A1 STATE
    PETEK, H
    NESBITT, DJ
    DARWIN, DC
    OGILBY, PR
    MOORE, CB
    RAMSAY, DA
    JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (11): : 6566 - 6578
  • [25] Hardware-in-the-Loop Simulation of GPS L1 C/A, Galileo E1B and BeiDou B1 Weak Signal Tracking in Highly Elliptical Orbits
    Kahr, Erin
    PROCEEDINGS OF THE 30TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2017), 2017, : 1613 - 1632
  • [26] ON THE LIFETIME BROADENING OF THE E0V1 AND E0V2 EXCITONS IN THE GAAS/ALXGA1-XAS ALLOY SYSTEM
    LOGOTHETIDIS, S
    CARDONA, M
    TRALLEROGINER, C
    JOURNAL OF APPLIED PHYSICS, 1990, 67 (09) : 4133 - 4139
  • [27] Author Correction: E2F1 is crucial for E2F-dependent apoptosis
    Eros Lazzerini Denchi
    Kristian Helin
    EMBO Reports, 2024, 25 (7) : 3162 - 3165
  • [28] 概率积分integralfromn=0to+∞(e-ax2dx)=1/2((π/a)~(1/2))(a&gt;0)的几种求法
    马亮亮
    田富鹏
    西北民族大学学报(自然科学版), 2009, 30 (03) : 26 - 32
  • [29] The NaK 1(b) 3ΠΩ=0 state hyperfine structure and the 1(b) 3ΠΩ=0∼2(A) 1Σ+ spin-orbit interaction -: art. no. 074306
    Burns, P
    Wilkins, AD
    Hickman, AP
    Huennekens, J
    JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (07):
  • [30] RESEARCHES ON THE EQUATION (E) X+(E1+E2X)X+X+E3X2=0
    OBI, C
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (01): : 26 - 32