Phase entanglement negativity for bipartite fermionic systems

被引:1
|
作者
Xu, Bing [1 ]
Qi, Xiaofei [1 ,2 ]
Hou, Jinchuan [3 ]
机构
[1] Shanxi Univ, Sch Math & Stat, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Key Lab Complex Syst & Data Sci, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
SEPARABILITY CRITERION; SPECTRUM; STATES;
D O I
10.1103/PhysRevA.110.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermionnumber parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [Phys. Rev. A 99, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the (1 + M)-mode case is also presented, and our results generalize some known findings.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Bound entanglement and teleportation for arbitrary bipartite systems
    Fan Jiao
    Zhao Hui
    CHINESE PHYSICS B, 2013, 22 (10)
  • [42] Inequalities detecting entanglement for arbitrary bipartite systems
    Zhao, Hui
    Fei, Shao-Ming
    Fan, Jiao
    Wang, Zhi-Xi
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (03)
  • [43] Entanglement detection and distillation for arbitrary bipartite systems
    Ming-Jing Zhao
    Ting-Gui Zhang
    Xianqing Li-Jost
    Shao-Ming Fei
    Quantum Information Processing, 2013, 12 : 2861 - 2870
  • [44] Bound Entanglement for Bipartite and Tripartite Quantum Systems
    Zhao, Hui
    Guo, Sha
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (09) : 3238 - 3250
  • [45] Entanglement detection and distillation for arbitrary bipartite systems
    Zhao, Ming-Jing
    Zhang, Ting-Gui
    Li-Jost, Xianqing
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2861 - 2870
  • [46] Entangled graphs: Bipartite entanglement in multiqubit systems
    Plesch, M
    Buzek, V
    PHYSICAL REVIEW A, 2003, 67 (01):
  • [47] Quantum entanglement of unitary operators on bipartite systems
    Wang, XG
    Zanardi, P
    PHYSICAL REVIEW A, 2002, 66 (04): : 4
  • [48] Multipartite entanglement in fermionic systems via a geometric measure
    Lari, Behzad
    Durganandini, P.
    Joag, Pramod S.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [49] Symmetry-resolved entanglement in fermionic systems with dissipation
    Murciano, Sara
    Calabrese, Pasquale
    Alba, Vincenzo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (11):
  • [50] Entanglement negativity in extended systems: a field theoretical approach
    Calabrese, Pasquale
    Cardy, John
    Tonni, Erik
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,