Phase entanglement negativity for bipartite fermionic systems

被引:1
|
作者
Xu, Bing [1 ]
Qi, Xiaofei [1 ,2 ]
Hou, Jinchuan [3 ]
机构
[1] Shanxi Univ, Sch Math & Stat, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Key Lab Complex Syst & Data Sci, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
SEPARABILITY CRITERION; SPECTRUM; STATES;
D O I
10.1103/PhysRevA.110.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermionnumber parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [Phys. Rev. A 99, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the (1 + M)-mode case is also presented, and our results generalize some known findings.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Entanglement spectrum in general free fermionic systems
    Bettelheim, Eldad
    Banerjee, Aditya
    Plenio, Martin B.
    Huelga, Susana F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (13)
  • [32] Measure of tripartite entanglement in bosonic and fermionic systems
    Buscemi, Fabrizio
    Bordone, Paolo
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [33] Symmetry resolved entanglement in free fermionic systems
    Bonsignori, Riccarda
    Ruggiero, Paola
    Calabrese, Pasquale
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (47)
  • [34] Entanglement in the dynamical evolution of composite fermionic systems
    Oliveira, V. C. G.
    Santos, H. A. B.
    Torres, L. A. M.
    Souza, A. M. C.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 (02) : 379 - 391
  • [35] Multipartite entanglement of fermionic systems in noninertial frames
    Wang, Jieci
    Jing, Jiliang
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [36] Entanglement degree measure and a criterion for sudden death as a phase transition in bipartite systems
    de Ponte, M. A.
    Mizrahi, S. S.
    Moussa, M. H. Y.
    ANNALS OF PHYSICS, 2009, 324 (11) : 2255 - 2264
  • [37] Bound entanglement and teleportation for arbitrary bipartite systems
    范姣
    赵慧
    Chinese Physics B, 2013, 22 (10) : 139 - 143
  • [38] Entangled graphs: Bipartite entanglement in multiqubit systems
    Plesch, Martin
    Bužek, Vladimiár
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (01): : 1 - 012322
  • [39] Quantum entanglement of unitary operators on bipartite systems
    Wang, Xiaoguang
    Zanardi, Paolo
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (04): : 443031 - 443034
  • [40] Bound Entanglement for Bipartite and Tripartite Quantum Systems
    Hui Zhao
    Sha Guo
    International Journal of Theoretical Physics, 2015, 54 : 3238 - 3250