Phase entanglement negativity for bipartite fermionic systems

被引:1
|
作者
Xu, Bing [1 ]
Qi, Xiaofei [1 ,2 ]
Hou, Jinchuan [3 ]
机构
[1] Shanxi Univ, Sch Math & Stat, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Key Lab Complex Syst & Data Sci, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
SEPARABILITY CRITERION; SPECTRUM; STATES;
D O I
10.1103/PhysRevA.110.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermionnumber parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [Phys. Rev. A 99, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the (1 + M)-mode case is also presented, and our results generalize some known findings.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Entanglement rates for bipartite open systems
    Vershynina, Anna
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [22] Entanglement transfer between bipartite systems
    Bougouffa, Smail
    Ficek, Zbigniew
    PHYSICA SCRIPTA, 2012, T147
  • [23] Complementarity and entanglement in bipartite qudit systems
    Jakob, Matthias
    Bergou, Janos A.
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [24] Thermalization in systems with bipartite eigenmode entanglement
    Chung, Ming-Chiang
    Iucci, A.
    Cazalilla, M. A.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [25] Characterizing the entanglement of bipartite quantum systems
    Giovannetti, V
    Mancini, S
    Vitali, D
    Tombesi, P
    PHYSICAL REVIEW A, 2003, 67 (02):
  • [26] Negativity volume of the generalized Wigner function as an entanglement witness for hybrid bipartite states
    Arkhipov, Ievgen I.
    Barasinski, Artur
    Svozilik, Jiri
    SCIENTIFIC REPORTS, 2018, 8
  • [27] Negativity volume of the generalized Wigner function as an entanglement witness for hybrid bipartite states
    Ievgen I. Arkhipov
    Artur Barasiński
    Jiří Svozilík
    Scientific Reports, 8
  • [28] Tetrapartite entanglement of fermionic systems in noninertial frames
    Li, Yazhou
    Liu, Cunjin
    Wang, Qi
    Zhang, Haoliang
    Hu, Liyun
    OPTIK, 2016, 127 (20): : 9788 - 9797
  • [29] Subarea law of entanglement in nodal fermionic systems
    Ding, Letian
    Bray-Ali, Noah
    Yu, Rong
    Haas, Stephan
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [30] Entanglement amplification of fermionic systems in an accelerated frame
    Kwon, Younghun
    Chang, Jinho
    PHYSICAL REVIEW A, 2012, 86 (01):