Phase entanglement negativity for bipartite fermionic systems

被引:1
|
作者
Xu, Bing [1 ]
Qi, Xiaofei [1 ,2 ]
Hou, Jinchuan [3 ]
机构
[1] Shanxi Univ, Sch Math & Stat, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Key Lab Complex Syst & Data Sci, Minist Educ, Taiyuan 030006, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
SEPARABILITY CRITERION; SPECTRUM; STATES;
D O I
10.1103/PhysRevA.110.032417
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the behavior of positive linear maps in fermionic systems and then propose the phase partial transpose and the phase entanglement negativity. We show that every fermionic state which mixes local fermionnumber parity must have nonvanishing nontrivial phase entanglement negativity, which gives an affirmative answer to a conjecture proposed by Shapourian and Ryu [Phys. Rev. A 99, 022310 (2019)]. In addition, we prove that the phase entanglement negativity is an entanglement monotone and establish some equalities and inequalities related to the phase entanglement negativity which, particularly, provide some upper bounds and lower bounds of the fermionic entanglement negativity. A more detailed discussion of the (1 + M)-mode case is also presented, and our results generalize some known findings.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Partial time-reversal transformation and entanglement negativity in fermionic systems
    Shapourian, Hassan
    Shiozaki, Ken
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2017, 95 (16)
  • [2] Entanglement negativity bounds for fermionic Gaussian states
    Eisert, Jens
    Eisler, Viktor
    Zimboras, Zoltan
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [3] Entanglement in fermionic systems at a quantum phase transition
    Department of Physics, Gu¸teborg University, Gu¸teborg SE-412 96, Sweden
    不详
    Fiz Nizk Temp, 2007, 11 (1232-1242):
  • [4] Entanglement in fermionic systems at a quantum phase transition
    Johannesson, H.
    Larsson, D.
    LOW TEMPERATURE PHYSICS, 2007, 33 (11) : 935 - 943
  • [5] Convex-roof extended negativity as an entanglement measure for bipartite quantum systems
    Lee, S
    Chi, DP
    Oh, SD
    Kim, J
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [6] Measuring fermionic entanglement: Entropy, negativity, and spin structure
    Cornfeld, Eyal
    Sela, Eran
    Goldstein, Moshe
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [7] Entanglement in fermionic systems
    Banuls, Mari-Carmen
    Cirac, J. Ignacio
    Wolf, Michael M.
    PHYSICAL REVIEW A, 2007, 76 (02):
  • [8] Entanglement negativity in a fermionic chain with dissipative defects: exact results
    Caceffo, Fabio
    Alba, Vincenzo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (02):
  • [9] Entanglement detachment in fermionic systems
    Hernán Santos
    José E. Alvarellos
    Javier Rodríguez-Laguna
    The European Physical Journal D, 2018, 72
  • [10] Fermionic entanglement in itinerant systems
    Zanardi, P
    Wang, X
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (37): : 7947 - 7959